src/test/wind-driven.c

    Wind-driven lake

    This is a simple test case of a wind-driven lake where we can compare results with an analytical solution. For the bottom of the domain we impose a no-slip condition (that is the default), for the top we impose a Neumann condition (see viscous friction between layers for details).

    We run the test case for three different solvers: multilayer Saint-Venant, layered hydrostatic, layered non-hydrostatic.

    #include "grid/multigrid1D.h"
    #if !ML
    #  include "saint-venant.h"
    #else
    #  include "layered/hydro.h"
    #  if NH
    #    include "layered/nh.h"
    # else
    #    include "layered/implicit.h"
    #  endif
    #  include "layered/remap.h"
    #endif

    There are five parameters L, h, g, \dot{u}, \nu. Only three are independent e.g. \displaystyle a = \frac{L}{h}, \displaystyle \text{Re} = \frac{\dot{u} h^2}{\nu} = s \frac{gh^3}{\nu^2}, \displaystyle s = \frac{\dot{u} \nu}{gh} = \frac{\dot{u}^2 h}{\text{Re} g} where a is the aspect ratio, Re the Reynolds number and s the slope of the free-surface. A characteristic time scale is \displaystyle t_{\nu} = \frac{h^2}{\nu} We choose a small Reynolds number and a small slope.

    double Re = 10.;
    double s = 1./1000.;
    double h0 = 1.;
    
    double du0;
    #if !ML
    scalar duv[];
    #else
    vector duv[];
    #endif
    
    int main()
    {
      L0 = 10. [1];
      X0 = -L0/2.;
      G = 9.81;
      N = 64;
      nu = sqrt(s*G*cube(h0)/Re);
      du0 = sqrt(s*G*Re/h0);
      dut = duv;

    We vary the number of layers.

    #if ML
      CFL_H = 8.;
      theta_H = 1.; // to damp short waves faster
    #endif
      
      for (nl = 4; nl <= 32; nl *= 2)
        run();
    }

    We set the initial water level to 1 and set the surface stress.

    event init (i = 0) {
      foreach() {
    #if !ML
        h[] = h0;
        duv[] = du0*(1. - pow(2.*x/L0,10));
    #else
        foreach_layer()
          h[] = h0/nl;
        duv.x[] = du0*(1. - pow(2.*x/L0,10));
    #endif
      }
    }

    We compute the error between the numerical solution and the analytical solution.

    #define uan(z)  (du0*(z)/4.*(3.*(z) - 2.))
    
    double t0 = 10;
    
    event error (t = t0/nu)
    {
      int i = 0;
      foreach() {
        if (i++ == N/2) {
          double z = zb[], emax = 0.;
    #if !ML
          int l = 0;
          for (vector u in ul) {
    	double e = fabs(u.x[] - uan (z + h[]*layer[l]/2.));
    	if (e > emax) 
    	  emax = e;
    	z += h[]*layer[l++];
          }
    #else
          foreach_layer() {
    	double e = fabs(u.x[] - uan (z + h[]/2.));
    	if (e > emax)
    	  emax = e;
    	z += h[];
          }
    #endif
          fprintf (stderr, "%d %g\n", nl, emax);
        }
      }
    }

    Uncomment this part if you want on-the-fly animation.

    #if 0
    #include "plot_layers.h"
    #endif

    For the hydrostatic case, we compute a diagnostic vertical velocity field w. Note that this needs to be done within this event because it relies on the fluxes hu and face heights hf, which are only defined temporarily in the multilayer solver.

    #if !NH && ML
    scalar w = {-1};
    
    event update_eta (i++)
    {
      if (w.i < 0)
        w = new scalar[nl];
      vertical_velocity (w, hu, hf);

    The layer interface values are averaged at the center of each layer.

      foreach() {
        double wm = 0.;
        foreach_layer() {
          double w1 = w[];
          w[] = (w1 + wm)/2.;
          wm = w1;
        }
      }
    }
    #endif // !NH && ML

    We save the horizontal velocity profile at the center of the domain and the two components of the velocity field for the case with 32 layers.

    event output (t = end) {
      char name[80];
      sprintf (name, "uprof-%d", nl);
      FILE * fp = fopen (name, "w");
      int i = 0;
      foreach() {
        if (i++ == N/2) {
    #if !ML
          int l = 0;
          double z = zb[] + h[]*layer[l]/2.;
          for (vector u in ul)
    	fprintf (fp, "%g %g\n", z, u.x[]), z += h[]*layer[l++];
    #else
          double z = zb[];
          foreach_layer()
    	fprintf (fp, "%g %g\n", z + h[]/2., u.x[]), z += h[];
    #endif
        }
        if (nl == 32) {
          double z = zb[];
    #if !ML
          int l = 0;
          scalar w;
          vector u;
          for (w,u in wl,ul) {
    	printf ("%g %g %g %g\n", x, z + h[]*layer[l]/2., u.x[], w[]);
    	z += layer[l++]*h[];
          }
    #else
          foreach_layer()
    	printf ("%g %g %g %g\n", x, z + h[]/2., u.x[], w[]), z += h[];
    #endif
          printf ("\n");
        }
      }
      fclose (fp);
    }

    Results

    set xr [0:1]
    set xl 'z'
    set yl 'u'
    set key left top
    G = 9.81
    s = 1./1000.
    Re = 10.
    du0 = sqrt(s*Re*G)
    plot [0:1]du0*x/4.*(3.*x-2.) t 'analytical', \
              'uprof-4' pt 5 t '4 layers', \
              'uprof-8' pt 6 t '8 layers', \
              'uprof-16' pt 9 t '16 layers', \
              'uprof-32' pt 10 t '32 layers'
    Numerical and analytical velocity profiles at the center of the lake. (script)

    Numerical and analytical velocity profiles at the center of the lake. (script)

    reset
    set cbrange [1:2]
    set logscale
    set xlabel 'Number of layers'
    set ylabel 'max|e|'
    set xtics 4,2,32
    set grid
    fit a*x+b 'log' u (log($1)):(log($2)) via a,b
    plot [3:36]'log' u 1:2 pt 7 t '', \
         exp(b)*x**a t sprintf("%.2f/N^{%4.2f}", exp(b), -a) lt 1
    Convergence of the error between the numerical and analytical solution with the number of layers. (script)

    Convergence of the error between the numerical and analytical solution with the number of layers. (script)

    reset
    unset key
    set xlabel 'x'
    set ylabel 'z'
    scale = 10.
    plot [-5:5][0:1]'out' u 1:2:($3*scale):($4*scale) w vectors
    Velocity field (32 layers). (script)

    Velocity field (32 layers). (script)

    See also