src/test/wind-driven-stvt.c
Wind-driven lake
This is a simple test case of a wind-driven lake where we can compare results with an analytical solution. For the bottom of the domain we impose a no-slip condition (that is the default), for the top we impose a Neumann condition (see viscous friction between layers for details).
We run the test case for three different solvers: multilayer Saint-Venant, layered hydrostatic, layered non-hydrostatic.
#include "grid/multigrid1D.h"
#if !ML
# include "saint-venant.h"
#else
# include "layered/hydro.h"
# if NH
# include "layered/nh.h"
# else
# include "layered/implicit.h"
# endif
# include "layered/remap.h"
#endifThere are five parameters L, h, g, \dot{u}, \nu. Only three are independent e.g. a = \frac{L}{h}, \text{Re} = \frac{\dot{u} h^2}{\nu} = s \frac{gh^3}{\nu^2}, s = \frac{\dot{u} \nu}{gh} = \frac{\dot{u}^2 h}{\text{Re} g} where a is the aspect ratio, Re the Reynolds number and s the slope of the free-surface. A characteristic time scale is t_{\nu} = \frac{h^2}{\nu} We choose a small Reynolds number and a small slope.
double Re = 10.;
double s = 1./1000.;
double h0 = 1.;
double du0;
#if !ML
scalar duv[];
#else
vector duv[];
#endif
int main()
{
L0 = 10. [1];
X0 = -L0/2.;
G = 9.81;
N = 64;
nu = sqrt(s*G*cube(h0)/Re);
du0 = sqrt(s*G*Re/h0);
dut = duv;We vary the number of layers.
#if ML
CFL_H = 8.;
theta_H = 1.; // to damp short waves faster
#endif
for (nl = 4; nl <= 32; nl *= 2)
run();
}We set the initial water level to 1 and set the surface stress.
event init (i = 0) {
foreach() {
#if !ML
h[] = h0;
duv[] = du0*(1. - pow(2.*x/L0,10));
#else
foreach_layer()
h[] = h0/nl;
duv.x[] = du0*(1. - pow(2.*x/L0,10));
#endif
}
}We compute the error between the numerical solution and the analytical solution.
#define uan(z) (du0*(z)/4.*(3.*(z) - 2.))
double t0 = 10;
event error (t = t0/nu)
{
int i = 0;
foreach() {
if (i++ == N/2) {
double z = zb[], emax = 0.;
#if !ML
int l = 0;
for (vector u in ul) {
double e = fabs(u.x[] - uan (z + h[]*layer[l]/2.));
if (e > emax)
emax = e;
z += h[]*layer[l++];
}
#else
foreach_layer() {
double e = fabs(u.x[] - uan (z + h[]/2.));
if (e > emax)
emax = e;
z += h[];
}
#endif
fprintf (stderr, "%d %g\n", nl, emax);
}
}
}Uncomment this part if you want on-the-fly animation.
#if 0
#include "plot_layers.h"
#endifFor the hydrostatic case, we compute a diagnostic vertical velocity
field w. Note that this needs to be done within this event
because it relies on the fluxes hu and face heights
hf, which are only defined temporarily in the multilayer solver.
#if !NH && ML
scalar w = {-1};
event update_eta (i++)
{
if (w.i < 0)
w = new scalar[nl];
vertical_velocity (w, hu, hf);The layer interface values are averaged at the center of each layer.
foreach() {
double wm = 0.;
foreach_layer() {
double w1 = w[];
w[] = (w1 + wm)/2.;
wm = w1;
}
}
}
#endif // !NH && MLWe save the horizontal velocity profile at the center of the domain and the two components of the velocity field for the case with 32 layers.
event output (t = end) {
char name[80];
sprintf (name, "uprof-%d", nl);
FILE * fp = fopen (name, "w");
int i = 0;
foreach() {
if (i++ == N/2) {
#if !ML
int l = 0;
double z = zb[] + h[]*layer[l]/2.;
for (vector u in ul)
fprintf (fp, "%g %g\n", z, u.x[]), z += h[]*layer[l++];
#else
double z = zb[];
foreach_layer()
fprintf (fp, "%g %g\n", z + h[]/2., u.x[]), z += h[];
#endif
}
if (nl == 32) {
double z = zb[];
#if !ML
int l = 0;
scalar w;
vector u;
for (w,u in wl,ul) {
printf ("%g %g %g %g\n", x, z + h[]*layer[l]/2., u.x[], w[]);
z += layer[l++]*h[];
}
#else
foreach_layer()
printf ("%g %g %g %g\n", x, z + h[]/2., u.x[], w[]), z += h[];
#endif
printf ("\n");
}
}
fclose (fp);
}Results
set xr [0:1]
set xl 'z'
set yl 'u'
set key left top
G = 9.81
s = 1./1000.
Re = 10.
du0 = sqrt(s*Re*G)
plot [0:1]du0*x/4.*(3.*x-2.) t 'analytical', \
'uprof-4' pt 5 t '4 layers', \
'uprof-8' pt 6 t '8 layers', \
'uprof-16' pt 9 t '16 layers', \
'uprof-32' pt 10 t '32 layers'reset
set cbrange [1:2]
set logscale
set xlabel 'Number of layers'
set ylabel 'max|e|'
set xtics 4,2,32
set grid
fit a*x+b 'log' u (log($1)):(log($2)) via a,b
plot [3:36]'log' u 1:2 pt 7 t '', \
exp(b)*x**a t sprintf("%.2f/N^{%4.2f}", exp(b), -a) lt 1reset
unset key
set xlabel 'x'
set ylabel 'z'
scale = 10.
plot [-5:5][0:1]'out' u 1:2:($3*scale):($4*scale) w vectors