Convergence of the Poisson solver
set xlabel 'CPU time (sec)'
set ylabel 'Maximum residual'
set logscale y
plot 'out' u 2:3 w lp t 'quadtree', 'cout' u 2:3 w lp t 'multigrid'
#include "utils.h"
#include "poisson.h"
scalar a[], b[], res[], dp[];
double solution (double x, double y, double z)
{
return cos(3.*pi*x)*cos(3.*pi*y)*cos(3.*pi*z);
}
int main (int argc, char ** argv)
{
/* Dirichlet condition on all boundaries */
foreach_dimension() {
a[right] = dirichlet (solution(x, y, z));
a[left] = dirichlet (solution(x, y, z));
}
/* homogeneous conditions for dp */
foreach_dimension() {
dp[right] = dirichlet(0);
dp[left] = dirichlet(0);
}
size (1. [0]); // dimensionless
origin (-0.5, -0.5, -0.5);
int depth = argc < 2 ? (dimension <= 2 ? 9 : 6) :
atoi(argv[1]), nrelax = 4;
init_grid(1 << depth);
foreach() {
b[] = - 9.*dimension*pi*pi*cos(3.*pi*x)*cos(3.*pi*y)*cos(3.*pi*z);
a[] = 0.;
}
#define NITER 13
clock_t start = clock(), iter[NITER];
double maxres[NITER];
const scalar lambda[] = 0.;
struct Poisson p;
p.a = a; p.b = b; p.alpha = unityf; p.lambda = lambda;
scalar * lres = {res};
residual ({a}, {b}, lres, &p);
for (int i = 0; i < NITER; i++) {
mg_cycle ({a}, lres, {dp}, relax, &p, nrelax, 0, depth());
maxres[i] = residual ({a}, {b}, lres, &p);
iter[i] = clock();
}
for (int i = 0; i < NITER; i++) {
fprintf (stderr, "%d %.2g\n", i, maxres[i]);
printf ("%d %g %g\n", i, (iter[i] - start)/(double)CLOCKS_PER_SEC,
maxres[i]);
}
double max = 0;
foreach() {
double e = a[] - solution(x, y, z);
if (fabs(e) > max) max = fabs(e);
// printf ("%g %g %g %g %g %g\n", x, y, a[], b[], res[], e);
}
fprintf (stderr, "# max error %g\n", max);
}