src/test/circle.c

    Poisson solution with a circular refined patch

    minlevel = 7
    maxlevel = 10
    
    ftitle(a,b) = sprintf("%.0f/x^{%4.2f}", exp(a), -b)
    f(x)=a+b*x
    fit f(x) '< grep "max error" log' u (log(2**$3)):(log($4)) via a,b
    set xlabel 'Maximum resolution'
    set ylabel 'Maximum error'
    set logscale
    set cbrange [1:2]
    set xrange [2**(minlevel-1):2**(maxlevel+1)]
    set xtics 2**(minlevel-1),2,2**(maxlevel+1)
    set grid ytics
    plot '< grep "max error" log' u (2**$3):4 t '', exp(f(log(x))) t ftitle(a,b)
    reset
    set xlabel 'Multigrid iteration'
    set ylabel 'Residual'
    set logscale y
    set grid ytics
    plot for [i = minlevel:maxlevel] \
         '< grep "residual '.i.'" log' u 3:4 w lp t 'level '.i
    Residual as a function of iterations (script)

    Residual as a function of iterations (script)

    reset
    set xlabel 'CPU Time'
    set ylabel 'Residual'
    set logscale
    plot for [i = minlevel:maxlevel] \
         '< grep "speed '.i.'" out' u 4:5 w lp t 'level '.i
    Residual as a function of CPU time (script)

    Residual as a function of CPU time (script)

    See also

    #include "utils.h"
    #include "poisson.h"
    
    scalar a[], b[], res[], dp[];
    
    double solution (double x, double y, double z)
    {
      return cos(3.*pi*x)*cos(3.*pi*y)*cos(3.*pi*z);
    }
    
    void solve (int depth)
    {
      /* Dirichlet condition on all boundaries */
      foreach_dimension() {
        a[right] = dirichlet (solution(x, y, z));
        a[left]  = dirichlet (solution(x, y, z));
      }
      /* homogeneous conditions for dp */
      foreach_dimension() {
        dp[right] = dirichlet(0);
        dp[left]  = dirichlet(0);
      }
    
      size (1. [0]); // space is dimensionless
      origin (-0.5, -0.5, -0.5);
      int nrelax = 4;
      init_grid(1);
    
      refine (level < depth - 2 || level <= depth*(1. - sqrt(x*x + y*y + z*z)));
      
      foreach() {
        b[] = - 9.*dimension*pi*pi*cos(3.*pi*x)*cos(3.*pi*y)*cos(3.*pi*z);
        a[] = 0.;
      }
    
      #define NITER 15
      clock_t start = clock(), iter[NITER];
      double maxres[NITER];
      const scalar lambda[] = 0.;
      struct Poisson p;
      p.a = a; p.b = b; p.alpha = unityf; p.lambda = lambda;
      scalar * lres = {res};
      residual ({a}, {b}, lres, &p);
      for (int i = 0; i < NITER; i++) {
        mg_cycle ({a}, lres, {dp}, relax, &p, nrelax, 0, depth());
        residual ({a}, {b}, lres, &p);
        double max = 0.;
        foreach(reduction(max:max))
          if (fabs(res[]) > max)
    	max = fabs(res[]);
        iter[i] = clock();
        maxres[i] = max;
      }
      for (int i = 0; i < NITER; i++) {
        fprintf (stderr, "residual %d %d %.1g\n", depth, i, maxres[i]);
        printf ("speed %d %d %g %g\n", depth, i, 
    	    (iter[i] - start)/(double)CLOCKS_PER_SEC, maxres[i]);
      }
    
      double max = 0;
      foreach(reduction(max:max)) {
        double e = a[] - solution(x, y, z);
        if (fabs(e) > max) max = fabs(e);
        //    printf ("%g %g %g %g %g %g\n", x, y, a[], b[], res[], e);
      }
      fprintf (stderr, "max error %d %g\n", depth, max);
    }
    
    int main (int argc, char ** argv)
    {
    #if dimension <= 2
      for (int depth = 7; depth <= 10; depth++)
    #else
      for (int depth = 5; depth <= 7; depth++)
    #endif
        solve (depth);
    }