src/parabola.h

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79
    80
    81
    82
    83
    84
    85
    86
    87
    88
    89
    90
    91
    92
    93
    94
    95
    96
    97
    98
    99
    100
    101
    102
    103
    104
    105
    106
    107
    108
    109
    110
    111
    112
    113
    114
    115
    116
    117
    118
    119
    120
    121
    122
    123
    124
    125
    126
    127
    128
    129
    130
    131
    132
    133
    134
    135
    136
    137
    138
    139
    140
    141
    142
    143
    144
    145
    146
    147
    148
    149
    150
    151
    152
    153
    154
    155
    156
    157
    158
    159
    160
    161
    162
    163
    164
    165
    166
    167
    168
    169
    170
    171
    172
    173
    174
    175
    176
    177
    178
    179
    180
    181
    182
    183
    184
    185
    186
    187
    188
    189
    190
    191
    192
    193
    194
    195
    196
    197
    198
    199
    200
    201
    202
    203
    204
    205
    206
    207
    208
    209
    210
    
    #include "utils.h"
    
    #define PARABOLA_FIT_CENTER_WEIGHT .1
    
    // Define this to use a x^iy^j polynomial with i = 0...NP-1, j = 0...NP-1
    // #define NP 3
    
    typedef struct {
      coord o;
    #if dimension == 2 /* y = a[0]*x^2 + a[1]*x + a[2] */
      coord m;
      double ** M, rhs[3], a[3];
    #else /* 3D z = a[0]*x^2 + a[1]*y^2 + a[2]*x*y + a[3]*x + a[4]*y + a[5] */
      double t[3][3];
    # ifdef NP
      double ** M, rhs[NP*NP], a[NP*NP];
    # else
      double ** M, rhs[6], a[6];
    # endif
    #endif /* 3D */
    } ParabolaFit;
    
    static void parabola_fit_init (ParabolaFit * p, coord o, coord m)
    {
      foreach_dimension()
        p->o.x = o.x;
    #if dimension == 2
      foreach_dimension()
        p->m.x = m.x;
      normalize (&p->m);
      int n = 3;
    #else /* 3D */
      double max;
      coord nx = {0., 0., 0.}, ny, nz;
      int d = 0;
    
      foreach_dimension()
        nz.x = m.x;
      normalize (&nz);
      max = sq(nz.x);
      /* build a vector orthogonal to nz */
      if (sq(nz.y) > max) { max = sq(nz.y); d = 1; }
      if (sq(nz.z) > max) d = 2;
      switch (d) {
      case 0: nx.x = - nz.z/nz.x; nx.z = 1.0; break;
      case 1: nx.y = - nz.z/nz.y; nx.z = 1.0; break;
      case 2: nx.z = - nz.x/nz.z; nx.x = 1.0; break;
      }
      normalize (&nx);
    
      /* build a second vector orthogonal to nx and nz */
      foreach_dimension()
        ny.x = nz.y*nx.z - nz.z*nx.y;
    
      /* transformation matrix from (i,j,k) to (nx, ny, nz) */
      p->t[0][0] = nx.x; p->t[0][1] = nx.y; p->t[0][2] = nx.z;
      p->t[1][0] = ny.x; p->t[1][1] = ny.y; p->t[1][2] = ny.z;
      p->t[2][0] = nz.x; p->t[2][1] = nz.y; p->t[2][2] = nz.z;
    # ifdef NP
      int n = NP*NP;
    # else
      int n = 6;
    # endif
    #endif /* 3D */
      p->M = (double **) matrix_new (n, n, sizeof(double));  
      for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++)
          p->M[i][j] = 0.;
        p->rhs[i] = 0.;
      }
    }
    
    static void parabola_fit_add (ParabolaFit * p, coord m, double w)
    {
    #if dimension == 2
      double x1 = m.x - p->o.x, y1 = m.y - p->o.y;
      double x = p->m.y*x1 - p->m.x*y1;
      double y = p->m.x*x1 + p->m.y*y1;
      double x2 = w*x*x, x3 = x2*x, x4 = x3*x;
      p->M[0][0] += x4;
      p->M[1][0] += x3; p->M[1][1] += x2;
      p->M[2][1] += w*x; p->M[2][2] += w;
      p->rhs[0] += x2*y; p->rhs[1] += w*x*y; p->rhs[2] += w*y;
    #else /* 3D */
      double x1 = m.x - p->o.x, y1 = m.y - p->o.y, z1 = m.z - p->o.z;
      double x = p->t[0][0]*x1 + p->t[0][1]*y1 + p->t[0][2]*z1;
      double y = p->t[1][0]*x1 + p->t[1][1]*y1 + p->t[1][2]*z1;
      double z = p->t[2][0]*x1 + p->t[2][1]*y1 + p->t[2][2]*z1;
    # ifdef NP
      for (int i = 0; i < NP; i++)
        for (int j = 0; j < NP; j++) {
          for (int k = 0; k < NP; k++)
    	for (int l = 0; l < NP; l++)
    	  p->M[i*NP + j][k*NP + l] += w*pow(x, i + k)*pow(y, j + l);
          p->rhs[i*NP + j] += w*z*pow(x, i)*pow(y, j);
        }
    # else // !NP 
      double x2 = x*x, x3 = x2*x, x4 = x3*x;
      double y2 = y*y, y3 = y2*y, y4 = y3*y;
      p->M[0][0] += w*x4; p->M[1][1] += w*y4; p->M[2][2] += w*x2*y2; 
      p->M[3][3] += w*x2; p->M[4][4] += w*y2; p->M[5][5] += w;
      p->M[0][2] += w*x3*y; p->M[0][3] += w*x3; p->M[0][4] += w*x2*y;
      p->M[1][2] += w*x*y3; p->M[1][3] += w*x*y2; p->M[1][4] += w*y3;
      p->M[2][5] += w*x*y;
      p->M[3][5] += w*x;
      p->M[4][5] += w*y;
      p->rhs[0] += w*x2*z; p->rhs[1] += w*y2*z; p->rhs[2] += w*x*y*z;
      p->rhs[3] += w*x*z; p->rhs[4] += w*y*z; p->rhs[5] += w*z;
    # endif // !NP
    #endif /* 3D */
    }
    
    static double parabola_fit_solve (ParabolaFit * p)
    {
    #if dimension == 2
      p->M[0][1] = p->M[1][0];
      p->M[0][2] = p->M[2][0] = p->M[1][1];
      p->M[1][2] = p->M[2][1];
      double pivmin = matrix_inverse (p->M, 3, 1e-10);
      if (pivmin) {
        p->a[0] = p->M[0][0]*p->rhs[0] + p->M[0][1]*p->rhs[1] + p->M[0][2]*p->rhs[2];
        p->a[1] = p->M[1][0]*p->rhs[0] + p->M[1][1]*p->rhs[1] + p->M[1][2]*p->rhs[2];
      }
      else /* this may be a degenerate/isolated interface fragment */
        p->a[0] = p->a[1] = 0.;
    #else /* 3D */
    # ifdef NP
      double pivmin = matrix_inverse (p->M, NP*NP, 1e-10);
      if (pivmin)
        for (int i = 0; i < NP*NP; i++) {
          p->a[i] = 0.;
          for (int j = 0; j < NP*NP; j++)
    	p->a[i] += p->M[i][j]*p->rhs[j];
        }
      else /* this may be a degenerate/isolated interface fragment */
        for (int i = 0; i < NP*NP; i++)
          p->a[i] = 0.;
    # else // !NP
      p->M[0][1] = p->M[2][2]; p->M[0][5] = p->M[3][3];
      p->M[1][5] = p->M[4][4];
      p->M[2][3] = p->M[0][4]; p->M[2][4] = p->M[1][3];
      p->M[3][4] = p->M[2][5];
      for (int i = 1; i < 6; i++)
        for (int j = 0; j < i; j++)
          p->M[i][j] = p->M[j][i];
      double pivmin = matrix_inverse (p->M, 6, 1e-10);
      if (pivmin)
        for (int i = 0; i < 6; i++) {
          p->a[i] = 0.;
          for (int j = 0; j < 6; j++)
    	p->a[i] += p->M[i][j]*p->rhs[j];
        }
      else /* this may be a degenerate/isolated interface fragment */
        for (int i = 0; i < 6; i++)
          p->a[i] = 0.;
    # endif // !NP
    #endif /* 3D */  
      matrix_free (p->M);
      return pivmin;
    }
    
    static double parabola_fit_curvature (ParabolaFit * p,
    				      double kappamax, double * kmax)
    {
      double kappa;
    #if dimension == 2
      double dnm = 1.[0] + sq(p->a[1]);
      kappa = - 2.*p->a[0]/pow(dnm, 3/2.);
      if (kmax)
        *kmax = fabs (kappa);
    #else /* 3D */
    # ifdef NP
      double hxx = 2.*p->a[2*NP], hyy = 2.*p->a[2], hxy = p->a[NP + 1];
      double hx = p->a[NP], hy = p->a[1];
    # else
      double hxx = 2.*p->a[0], hyy = 2.*p->a[1], hxy = p->a[2];
      double hx = p->a[3], hy = p->a[4];
    # endif
      double dnm = 1. + sq(hx) + sq(hy);
      kappa = - (hxx*(1. + sq(hy)) + hyy*(1. + sq(hx)) - 2.*hxy*hx*hy)
        /sqrt (dnm*dnm*dnm);
      if (kmax) {
        double kg = (hxx*hyy - hxy*hxy)/(dnm*dnm);
        double a = kappa*kappa/4. - kg;
        *kmax = fabs (kappa/2.);
        if (a >= 0.)
          *kmax += sqrt (a);
      }
    #endif /* 3D */
      if (fabs (kappa) > kappamax) {
        if (kmax)
          *kmax = kappamax;
        return kappa > 0. ? kappamax : - kappamax;
      }
      return kappa;
    }
    
    #if AXI
    static void parabola_fit_axi_curvature (const ParabolaFit * p,
    					double r, double h,
    					double * kappa, double * kmax)
    {
      double nr = (p->m.x*p->a[1] + p->m.y)/sqrt (1. + sq(p->a[1]));
      /* limit the minimum radius to half the grid size */
      double kaxi = nr/max(r, h/2.);
      *kappa += kaxi;
      if (kmax)
        *kmax = max (*kmax, fabs (kaxi));
    }
    #endif /* 2D */