1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
| #include "utils.h"
#define PARABOLA_FIT_CENTER_WEIGHT .1
// Define this to use a x^iy^j polynomial with i = 0...NP-1, j = 0...NP-1
// #define NP 3
typedef struct {
coord o;
#if dimension == 2 /* y = a[0]*x^2 + a[1]*x + a[2] */
coord m;
double ** M, rhs[3], a[3];
#else /* 3D z = a[0]*x^2 + a[1]*y^2 + a[2]*x*y + a[3]*x + a[4]*y + a[5] */
double t[3][3];
# ifdef NP
double ** M, rhs[NP*NP], a[NP*NP];
# else
double ** M, rhs[6], a[6];
# endif
#endif /* 3D */
} ParabolaFit;
static void parabola_fit_init (ParabolaFit * p, coord o, coord m)
{
foreach_dimension()
p->o.x = o.x;
#if dimension == 2
foreach_dimension()
p->m.x = m.x;
normalize (&p->m);
int n = 3;
#else /* 3D */
double max;
coord nx = {0., 0., 0.}, ny, nz;
int d = 0;
foreach_dimension()
nz.x = m.x;
normalize (&nz);
max = sq(nz.x);
/* build a vector orthogonal to nz */
if (sq(nz.y) > max) { max = sq(nz.y); d = 1; }
if (sq(nz.z) > max) d = 2;
switch (d) {
case 0: nx.x = - nz.z/nz.x; nx.z = 1.0; break;
case 1: nx.y = - nz.z/nz.y; nx.z = 1.0; break;
case 2: nx.z = - nz.x/nz.z; nx.x = 1.0; break;
}
normalize (&nx);
/* build a second vector orthogonal to nx and nz */
foreach_dimension()
ny.x = nz.y*nx.z - nz.z*nx.y;
/* transformation matrix from (i,j,k) to (nx, ny, nz) */
p->t[0][0] = nx.x; p->t[0][1] = nx.y; p->t[0][2] = nx.z;
p->t[1][0] = ny.x; p->t[1][1] = ny.y; p->t[1][2] = ny.z;
p->t[2][0] = nz.x; p->t[2][1] = nz.y; p->t[2][2] = nz.z;
# ifdef NP
int n = NP*NP;
# else
int n = 6;
# endif
#endif /* 3D */
p->M = (double **) matrix_new (n, n, sizeof(double));
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++)
p->M[i][j] = 0.;
p->rhs[i] = 0.;
}
}
static void parabola_fit_add (ParabolaFit * p, coord m, double w)
{
#if dimension == 2
double x1 = m.x - p->o.x, y1 = m.y - p->o.y;
double x = p->m.y*x1 - p->m.x*y1;
double y = p->m.x*x1 + p->m.y*y1;
double x2 = w*x*x, x3 = x2*x, x4 = x3*x;
p->M[0][0] += x4;
p->M[1][0] += x3; p->M[1][1] += x2;
p->M[2][1] += w*x; p->M[2][2] += w;
p->rhs[0] += x2*y; p->rhs[1] += w*x*y; p->rhs[2] += w*y;
#else /* 3D */
double x1 = m.x - p->o.x, y1 = m.y - p->o.y, z1 = m.z - p->o.z;
double x = p->t[0][0]*x1 + p->t[0][1]*y1 + p->t[0][2]*z1;
double y = p->t[1][0]*x1 + p->t[1][1]*y1 + p->t[1][2]*z1;
double z = p->t[2][0]*x1 + p->t[2][1]*y1 + p->t[2][2]*z1;
# ifdef NP
for (int i = 0; i < NP; i++)
for (int j = 0; j < NP; j++) {
for (int k = 0; k < NP; k++)
for (int l = 0; l < NP; l++)
p->M[i*NP + j][k*NP + l] += w*pow(x, i + k)*pow(y, j + l);
p->rhs[i*NP + j] += w*z*pow(x, i)*pow(y, j);
}
# else // !NP
double x2 = x*x, x3 = x2*x, x4 = x3*x;
double y2 = y*y, y3 = y2*y, y4 = y3*y;
p->M[0][0] += w*x4; p->M[1][1] += w*y4; p->M[2][2] += w*x2*y2;
p->M[3][3] += w*x2; p->M[4][4] += w*y2; p->M[5][5] += w;
p->M[0][2] += w*x3*y; p->M[0][3] += w*x3; p->M[0][4] += w*x2*y;
p->M[1][2] += w*x*y3; p->M[1][3] += w*x*y2; p->M[1][4] += w*y3;
p->M[2][5] += w*x*y;
p->M[3][5] += w*x;
p->M[4][5] += w*y;
p->rhs[0] += w*x2*z; p->rhs[1] += w*y2*z; p->rhs[2] += w*x*y*z;
p->rhs[3] += w*x*z; p->rhs[4] += w*y*z; p->rhs[5] += w*z;
# endif // !NP
#endif /* 3D */
}
static double parabola_fit_solve (ParabolaFit * p)
{
#if dimension == 2
p->M[0][1] = p->M[1][0];
p->M[0][2] = p->M[2][0] = p->M[1][1];
p->M[1][2] = p->M[2][1];
double pivmin = matrix_inverse (p->M, 3, 1e-10);
if (pivmin) {
p->a[0] = p->M[0][0]*p->rhs[0] + p->M[0][1]*p->rhs[1] + p->M[0][2]*p->rhs[2];
p->a[1] = p->M[1][0]*p->rhs[0] + p->M[1][1]*p->rhs[1] + p->M[1][2]*p->rhs[2];
}
else /* this may be a degenerate/isolated interface fragment */
p->a[0] = p->a[1] = 0.;
#else /* 3D */
# ifdef NP
double pivmin = matrix_inverse (p->M, NP*NP, 1e-10);
if (pivmin)
for (int i = 0; i < NP*NP; i++) {
p->a[i] = 0.;
for (int j = 0; j < NP*NP; j++)
p->a[i] += p->M[i][j]*p->rhs[j];
}
else /* this may be a degenerate/isolated interface fragment */
for (int i = 0; i < NP*NP; i++)
p->a[i] = 0.;
# else // !NP
p->M[0][1] = p->M[2][2]; p->M[0][5] = p->M[3][3];
p->M[1][5] = p->M[4][4];
p->M[2][3] = p->M[0][4]; p->M[2][4] = p->M[1][3];
p->M[3][4] = p->M[2][5];
for (int i = 1; i < 6; i++)
for (int j = 0; j < i; j++)
p->M[i][j] = p->M[j][i];
double pivmin = matrix_inverse (p->M, 6, 1e-10);
if (pivmin)
for (int i = 0; i < 6; i++) {
p->a[i] = 0.;
for (int j = 0; j < 6; j++)
p->a[i] += p->M[i][j]*p->rhs[j];
}
else /* this may be a degenerate/isolated interface fragment */
for (int i = 0; i < 6; i++)
p->a[i] = 0.;
# endif // !NP
#endif /* 3D */
matrix_free (p->M);
return pivmin;
}
static double parabola_fit_curvature (ParabolaFit * p,
double kappamax, double * kmax)
{
double kappa;
#if dimension == 2
double dnm = 1.[0] + sq(p->a[1]);
kappa = - 2.*p->a[0]/pow(dnm, 3/2.);
if (kmax)
*kmax = fabs (kappa);
#else /* 3D */
# ifdef NP
double hxx = 2.*p->a[2*NP], hyy = 2.*p->a[2], hxy = p->a[NP + 1];
double hx = p->a[NP], hy = p->a[1];
# else
double hxx = 2.*p->a[0], hyy = 2.*p->a[1], hxy = p->a[2];
double hx = p->a[3], hy = p->a[4];
# endif
double dnm = 1. + sq(hx) + sq(hy);
kappa = - (hxx*(1. + sq(hy)) + hyy*(1. + sq(hx)) - 2.*hxy*hx*hy)
/sqrt (dnm*dnm*dnm);
if (kmax) {
double kg = (hxx*hyy - hxy*hxy)/(dnm*dnm);
double a = kappa*kappa/4. - kg;
*kmax = fabs (kappa/2.);
if (a >= 0.)
*kmax += sqrt (a);
}
#endif /* 3D */
if (fabs (kappa) > kappamax) {
if (kmax)
*kmax = kappamax;
return kappa > 0. ? kappamax : - kappamax;
}
return kappa;
}
#if AXI
static void parabola_fit_axi_curvature (const ParabolaFit * p,
double r, double h,
double * kappa, double * kmax)
{
double nr = (p->m.x*p->a[1] + p->m.y)/sqrt (1. + sq(p->a[1]));
/* limit the minimum radius to half the grid size */
double kaxi = nr/max(r, h/2.);
*kappa += kaxi;
if (kmax)
*kmax = max (*kmax, fabs (kaxi));
}
#endif /* 2D */
|