src/output.h
- Output functions
- output_field(): Multiple fields interpolated on a regular grid (text format)
- output_matrix(): Single field interpolated on a regular grid (binary format)
- Colormaps
- Image/animation conversion
- output_ppm(): Portable PixMap (PPM) image output
- output_grd(): ESRI ASCII Grid format
- output_gfs(): Gerris simulation format
- dump(): Basilisk snapshots
Output functions
output_field(): Multiple fields interpolated on a regular grid (text format)
This function interpolates a list of fields on a n+1 x n+1 regular grid. The resulting data are written in text format in the file pointed to by fp. The correspondance between column numbers and variables is summarised in the first line of the file. The data are written row-by-row and each row is separated from the next by a blank line. This format is compatible with the splot command of gnuplot i.e. one could use something like
gnuplot> set pm3d map
gnuplot> splot 'fields' u 1:2:4
The arguments and their default values are:
- list
- list of fields to output. Default is all.
- fp
- file pointer. Default is stdout.
- n
- number of points along each dimension. Default is N.
- linear
- use first-order (default) or bilinear interpolation.
- box
- the lower-left and upper-right coordinates of the domain to consider. Default is the entire domain.
struct OutputField {
scalar * list;
FILE * fp;
int n;
bool linear;
double box[2][2];
};
trace
void output_field (struct OutputField p)
{
if (!p.list) p.list = all;
if (p.n == 0) p.n = N;
if (!p.fp) p.fp = stdout;
p.n++;
if (p.box[0][0] == 0. && p.box[0][1] == 0. &&
p.box[1][0] == 0. && p.box[1][1] == 0.) {
p.box[0][0] = X0; p.box[0][1] = Y0;
p.box[1][0] = X0 + L0; p.box[1][1] = Y0 + L0;
}
boundary (p.list);
int len = list_len(p.list);
double Delta = 0.999999*(p.box[1][0] - p.box[0][0])/(p.n - 1);
int ny = (p.box[1][1] - p.box[0][1])/Delta + 1;
double ** field = (double **) matrix_new (p.n, ny, len*sizeof(double));
for (int i = 0; i < p.n; i++) {
double x = Delta*i + p.box[0][0];
for (int j = 0; j < ny; j++) {
double y = Delta*j + p.box[0][1];
if (p.linear) {
int k = 0;
for (scalar s in p.list)
field[i][len*j + k++] = interpolate (s, x, y);
}
else {
Point point = locate (x, y);
int k = 0;
for (scalar s in p.list)
field[i][len*j + k++] = point.level >= 0 ? s[] : nodata;
}
}
}
if (pid() == 0) { // master
@if _MPI
MPI_Reduce (MPI_IN_PLACE, field[0], len*p.n*ny, MPI_DOUBLE, MPI_MIN, 0,
MPI_COMM_WORLD);
@endif
fprintf (p.fp, "# 1:x 2:y");
int i = 3;
for (scalar s in p.list)
fprintf (p.fp, " %d:%s", i++, s.name);
fputc('\n', p.fp);
for (int i = 0; i < p.n; i++) {
double x = Delta*i + p.box[0][0];
for (int j = 0; j < ny; j++) {
double y = Delta*j + p.box[0][1];
// map (x, y);
fprintf (p.fp, "%g %g", x, y);
int k = 0;
for (scalar s in p.list)
fprintf (p.fp, " %g", field[i][len*j + k++]);
fputc ('\n', p.fp);
}
fputc ('\n', p.fp);
}
fflush (p.fp);
}
@if _MPI
else // slave
MPI_Reduce (field[0], NULL, len*p.n*ny, MPI_DOUBLE, MPI_MIN, 0,
MPI_COMM_WORLD);
@endif
matrix_free (field);
}
output_matrix(): Single field interpolated on a regular grid (binary format)
This function writes a binary representation of a single field interpolated on a regular n x n grid. The format is compatible with the binary matrix format of gnuplot i.e. one could use
gnuplot> set pm3d map
gnuplot> splot 'matrix' binary u 2:1:3
The arguments and their default values are:
- f
- a scalar field (compulsory).
- fp
- file pointer. Default is stdout.
- n
- number of points along each dimension. Default is N.
- linear
- use first-order (default) or bilinear interpolation.
struct OutputMatrix {
scalar f;
FILE * fp;
int n;
bool linear;
};
trace
void output_matrix (struct OutputMatrix p)
{
if (p.n == 0) p.n = N;
if (!p.fp) p.fp = stdout;
if (p.linear) {
scalar f = p.f;
boundary ({f});
}
float fn = p.n;
float Delta = (float) L0/fn;
fwrite (&fn, sizeof(float), 1, p.fp);
for (int j = 0; j < p.n; j++) {
float yp = (float) (Delta*j + X0 + Delta/2.);
fwrite (&yp, sizeof(float), 1, p.fp);
}
for (int i = 0; i < p.n; i++) {
float xp = (float) (Delta*i + X0 + Delta/2.);
fwrite (&xp, sizeof(float), 1, p.fp);
for (int j = 0; j < p.n; j++) {
float yp = (float)(Delta*j + Y0 + Delta/2.), v;
if (p.linear)
v = interpolate (p.f, xp, yp);
else {
Point point = locate (xp, yp);
assert (point.level >= 0);
v = p.f[];
}
fwrite (&v, sizeof(float), 1, p.fp);
}
}
fflush (p.fp);
}
Colormaps
Colormaps are arrays of (127) red, green, blue triplets.
#define NCMAP 127
typedef void (* colormap) (double cmap[NCMAP][3]);
void jet (double cmap[NCMAP][3])
{
for (int i = 0; i < NCMAP; i++) {
cmap[i][0] =
i <= 46 ? 0. :
i >= 111 ? -0.03125*(i - 111) + 1. :
i >= 78 ? 1. :
0.03125*(i - 46);
cmap[i][1] =
i <= 14 || i >= 111 ? 0. :
i >= 79 ? -0.03125*(i - 111) :
i <= 46 ? 0.03125*(i - 14) :
1.;
cmap[i][2] =
i >= 79 ? 0. :
i >= 47 ? -0.03125*(i - 79) :
i <= 14 ? 0.03125*(i - 14) + 1.:
1.;
}
}
void cool_warm (double cmap[NCMAP][3])
{
/* diverging cool-warm from:
* http://www.sandia.gov/~kmorel/documents/ColorMaps/CoolWarmFloat33.csv
* see also:
* Diverging Color Maps for Scientific Visualization (Expanded)
* Kenneth Moreland
*/
static double basemap[33][3] = {
{0.2298057, 0.298717966, 0.753683153},
{0.26623388, 0.353094838, 0.801466763},
{0.30386891, 0.406535296, 0.84495867},
{0.342804478, 0.458757618, 0.883725899},
{0.38301334, 0.50941904, 0.917387822},
{0.424369608, 0.558148092, 0.945619588},
{0.46666708, 0.604562568, 0.968154911},
{0.509635204, 0.648280772, 0.98478814},
{0.552953156, 0.688929332, 0.995375608},
{0.596262162, 0.726149107, 0.999836203},
{0.639176211, 0.759599947, 0.998151185},
{0.681291281, 0.788964712, 0.990363227},
{0.722193294, 0.813952739, 0.976574709},
{0.761464949, 0.834302879, 0.956945269},
{0.798691636, 0.849786142, 0.931688648},
{0.833466556, 0.860207984, 0.901068838},
{0.865395197, 0.86541021, 0.865395561},
{0.897787179, 0.848937047, 0.820880546},
{0.924127593, 0.827384882, 0.774508472},
{0.944468518, 0.800927443, 0.726736146},
{0.958852946, 0.769767752, 0.678007945},
{0.96732803, 0.734132809, 0.628751763},
{0.969954137, 0.694266682, 0.579375448},
{0.966811177, 0.650421156, 0.530263762},
{0.958003065, 0.602842431, 0.481775914},
{0.943660866, 0.551750968, 0.434243684},
{0.923944917, 0.49730856, 0.387970225},
{0.89904617, 0.439559467, 0.343229596},
{0.869186849, 0.378313092, 0.300267182},
{0.834620542, 0.312874446, 0.259301199},
{0.795631745, 0.24128379, 0.220525627},
{0.752534934, 0.157246067, 0.184115123},
{0.705673158, 0.01555616, 0.150232812}
};
for (int i = 0; i < NCMAP; i++) {
double x = i*(32 - 1e-10)/(NCMAP - 1);
int j = x; x -= j;
for (int k = 0; k < 3; k++)
cmap[i][k] = (1. - x)*basemap[j][k] + x*basemap[j+1][k];
}
}
void gray (double cmap[NCMAP][3])
{
for (int i = 0; i < NCMAP; i++)
for (int k = 0; k < 3; k++)
cmap[i][k] = i/(NCMAP - 1.);
}
void randomap (double cmap[NCMAP][3])
{
srand(0);
for (int i = 0; i < NCMAP; i++)
for (int k = 0; k < 3; k++)
cmap[i][k] = (noise() + 1.)/2.;
}
void blue_white_red (double cmap[NCMAP][3])
{
for (int i = 0; i < (NCMAP + 1)/2; i++) {
cmap[i][0] = i/((NCMAP - 1)/2.);
cmap[i][1] = i/((NCMAP - 1)/2.);
cmap[i][2] = 1.;
}
for (int i = 0; i < (NCMAP - 1)/2; i++) {
cmap[i + (NCMAP + 1)/2][0] = 1.;
cmap[i + (NCMAP + 1)/2][1] = cmap[(NCMAP - 3)/2 - i][1];
cmap[i + (NCMAP + 1)/2][2] = cmap[(NCMAP - 3)/2 - i][1];
}
}
Given a colormap and a minimum and maximum value, this function returns the red/green/blue triplet corresponding to val.
typedef struct {
unsigned char r, g, b;
} color;
color colormap_color (double cmap[NCMAP][3],
double val, double min, double max)
{
color c;
if (val == nodata) {
c.r = c.g = c.b = 0; // nodata is black
return c;
}
int i;
double coef;
if (max != min)
val = (val - min)/(max - min);
else
val = 0.;
if (val <= 0.) i = 0, coef = 0.;
else if (val >= 1.) i = NCMAP - 2, coef = 1.;
else {
i = val*(NCMAP - 1);
coef = val*(NCMAP - 1) - i;
}
assert (i < NCMAP - 1);
unsigned char * c1 = (unsigned char *) &c;
for (int j = 0; j < 3; j++)
c1[j] = 255*(cmap[i][j]*(1. - coef) + cmap[i + 1][j]*coef);
return c;
}
Image/animation conversion
The open_image()/close_image() functions use pipes to convert PPM images to other formats, including .mp4
, .ogv
and .gif
animations.
The functions check whether the ‘ffmpeg’ or ‘convert’ executables are accessible, if they are not the conversion is disabled and the raw PPM images are saved. An extra “.ppm” extension is added to the file name to indicate that this happened.
static const char * extension (const char * file, const char * ext) {
int len = strlen(file);
return len > 4 && !strcmp (file + len - 4, ext) ? file + len - 4 : NULL;
}
static const char * is_animation (const char * file) {
const char * ext;
if ((ext = extension (file, ".mp4")) ||
(ext = extension (file, ".ogv")) ||
(ext = extension (file, ".gif")))
return ext;
return NULL;
}
static struct {
FILE ** fp;
char ** names;
int n;
} open_image_data = {NULL, NULL, 0};
static void open_image_cleanup()
{
for (int i = 0; i < open_image_data.n; i++) {
pclose (open_image_data.fp[i]);
free (open_image_data.names[i]);
}
free (open_image_data.fp);
free (open_image_data.names);
open_image_data.fp = NULL;
open_image_data.names = NULL;
open_image_data.n = 0;
}
static FILE * open_image_lookup (const char * file)
{
for (int i = 0; i < open_image_data.n; i++)
if (!strcmp (file, open_image_data.names[i]))
return open_image_data.fp[i];
return NULL;
}
static bool which (const char * command)
{
char * s = getenv ("PATH");
if (!s)
return false;
char path[strlen(s) + 1];
strcpy (path, s);
s = strtok (path, ":");
while (s) {
char f[strlen(s) + strlen(command) + 2];
strcpy (f, s);
strcat (f, "/");
strcat (f, command);
FILE * fp = fopen (f, "r");
if (fp) {
fclose (fp);
return true;
}
s = strtok (NULL, ":");
}
return false;
}
static FILE * ppm_fallback (const char * file, const char * mode)
{
char filename[strlen(file) + 5];
strcpy (filename, file);
strcat (filename, ".ppm");
FILE * fp = fopen (filename, mode);
if (!fp) {
perror (file);
#if _MPI
MPI_Abort (MPI_COMM_WORLD, 1);
#endif
exit (1);
}
return fp;
}
FILE * open_image (const char * file, const char * options)
{
assert (pid() == 0);
const char * ext;
if ((ext = is_animation (file))) {
FILE * fp = open_image_lookup (file);
if (fp)
return fp;
int len = strlen ("ppm2??? ") + strlen (file) +
(options ? strlen (options) : 0);
char command[len];
strcpy (command, "ppm2"); strcat (command, ext + 1);
static int has_ffmpeg = -1;
if (has_ffmpeg < 0) {
if (which (command) && (which ("ffmpeg") || which ("avconv")))
has_ffmpeg = true;
else {
fprintf (ferr,
"open_image(): cannot find '%s' or 'ffmpeg'/'avconv'\n"
" falling back to raw PPM outputs\n", command);
has_ffmpeg = false;
}
}
if (!has_ffmpeg)
return ppm_fallback (file, "a");
static bool added = false;
if (!added) {
free_solver_func_add (open_image_cleanup);
added = true;
}
open_image_data.n++;
qrealloc (open_image_data.names, open_image_data.n, char *);
open_image_data.names[open_image_data.n - 1] = strdup (file);
if (options) {
strcat (command, " ");
strcat (command, options);
}
strcat (command, !strcmp (ext, ".mp4") ? " " : " > ");
strcat (command, file);
qrealloc (open_image_data.fp, open_image_data.n, FILE *);
return open_image_data.fp[open_image_data.n - 1] = popen (command, "w");
}
else { // !animation
static int has_convert = -1;
if (has_convert < 0) {
if (which ("convert"))
has_convert = true;
else {
fprintf (ferr,
"open_image(): cannot find 'convert'\n"
" falling back to raw PPM outputs\n");
has_convert = false;
}
}
if (!has_convert)
return ppm_fallback (file, "w");
int len = strlen ("convert ppm:- ") + strlen (file) +
(options ? strlen (options) : 0);
char command[len];
strcpy (command, "convert ppm:- ");
if (options) {
strcat (command, options);
strcat (command, " ");
}
strcat (command, file);
return popen (command, "w");
}
}
void close_image (const char * file, FILE * fp)
{
assert (pid() == 0);
if (is_animation (file)) {
if (!open_image_lookup (file))
fclose (fp);
}
else if (which ("convert"))
pclose (fp);
else
fclose (fp);
}
output_ppm(): Portable PixMap (PPM) image output
Given a field, this function outputs a colormaped representation as a Portable PixMap image.
If ImageMagick is installed on the system, this image can optionally be converted to any image format supported by ImageMagick.
The arguments and their default values are:
- f
- a scalar field (compulsory).
- fp
- a file pointer. Default is stdout.
- n
- number of pixels. Default is N.
- file
- sets the name of the file used as output for ImageMagick. This allows outputs in all formats supported by ImageMagick. For example, one could use
output_ppm (f, file = "f.png");
to get a PNG image.
- min, max
- minimum and maximum values used to define the colorscale. By default these are set automatically using the spread parameter.
- spread
- if not specified explicitly, min and max are set to the average of the field minus (resp. plus) spread times the standard deviation. By default spread is five. If negative, the minimum and maximum values of the field are used.
- linear
- whether to use bilinear or first-order interpolation. Default is first-order.
- box
- the lower-left and upper-right coordinates of the domain to consider. Default is the entire domain.
- mask
- if set, this field will be used to mask out (in black), the regions of the domain for which mask is negative.
- map
- the colormap: jet, cool_warm or gray. Default is jet.
- opt
- options to pass to ‘convert’ or to the ‘ppm2???’ scripts (used with file).
struct OutputPPM {
scalar f;
FILE * fp;
int n;
char * file;
double min, max, spread, z;
bool linear;
double box[2][2];
scalar mask;
colormap map;
char * opt;
};
trace
void output_ppm (struct OutputPPM p)
{
// default values
if (!p.n) p.n = N;
if (!p.min && !p.max) {
stats s = statsf (p.f);
if (p.spread < 0.)
p.min = s.min, p.max = s.max;
else {
double avg = s.sum/s.volume, spread = (p.spread ? p.spread : 5.)*s.stddev;
p.min = avg - spread; p.max = avg + spread;
}
}
if (!p.box[0][0] && !p.box[0][1] &&
!p.box[1][0] && !p.box[1][1]) {
p.box[0][0] = X0; p.box[0][1] = Y0;
p.box[1][0] = X0 + L0; p.box[1][1] = Y0 + L0;
}
if (!p.map)
p.map = jet;
if (p.linear) {
scalar f = p.f, mask = p.mask;
if (mask.i)
boundary ({f, mask});
else
boundary ({f});
}
double fn = p.n;
double Delta = (p.box[1][0] - p.box[0][0])/fn;
int ny = (p.box[1][1] - p.box[0][1])/Delta;
if (ny % 2) ny++;
color ** ppm = (color **) matrix_new (ny, p.n, sizeof(color));
double cmap[NCMAP][3];
p.map (cmap);
OMP_PARALLEL() {
OMP(omp for schedule(static))
for (int j = 0; j < ny; j++) {
double yp = Delta*j + p.box[0][1] + Delta/2.;
for (int i = 0; i < p.n; i++) {
double xp = Delta*i + p.box[0][0] + Delta/2., v;
if (p.mask.i) { // masking
if (p.linear) {
double m = interpolate (p.mask, xp, yp, p.z);
if (m < 0.)
v = nodata;
else
v = interpolate (p.f, xp, yp, p.z);
}
else {
Point point = locate (xp, yp, p.z);
if (point.level < 0 || p.mask[] < 0.)
v = nodata;
else
v = p.f[];
}
}
else if (p.linear)
v = interpolate (p.f, xp, yp, p.z);
else {
Point point = locate (xp, yp, p.z);
v = point.level >= 0 ? p.f[] : nodata;
}
ppm[ny - 1 - j][i] = colormap_color (cmap, v, p.min, p.max);
}
}
}
if (pid() == 0) { // master
@if _MPI
MPI_Reduce (MPI_IN_PLACE, ppm[0], 3*ny*p.n, MPI_UNSIGNED_CHAR, MPI_MAX, 0,
MPI_COMM_WORLD);
@endif
if (!p.fp) p.fp = stdout;
if (p.file)
p.fp = open_image (p.file, p.opt);
fprintf (p.fp, "P6\n%u %u 255\n", p.n, ny);
fwrite (((void **) ppm)[0], sizeof(color), ny*p.n, p.fp);
if (p.file)
close_image (p.file, p.fp);
else
fflush (p.fp);
}
@if _MPI
else // slave
MPI_Reduce (ppm[0], NULL, 3*ny*p.n, MPI_UNSIGNED_CHAR, MPI_MAX, 0,
MPI_COMM_WORLD);
@endif
matrix_free (ppm);
}
output_grd(): ESRI ASCII Grid format
The ESRI GRD format is a standard format for importing raster data into GIS systems.
The arguments and their default values are:
- f
- a scalar field (compulsory).
- fp
- a file pointer. Default is stdout.
- \Delta
- size of a grid element. Default is 1/N.
- linear
- whether to use bilinear or first-order interpolation. Default is first-order.
- box
- the lower-left and upper-right coordinates of the domain to consider. Default is the entire domain.
- mask
- if set, this field will be used to mask out, the regions of the domain for which mask is negative.
struct OutputGRD {
scalar f;
FILE * fp;
double Delta;
bool linear;
double box[2][2];
scalar mask;
};
trace
void output_grd (struct OutputGRD p)
{
// default values
if (!p.fp) p.fp = stdout;
if (p.box[0][0] == 0. && p.box[0][1] == 0. &&
p.box[1][0] == 0. && p.box[1][1] == 0.) {
p.box[0][0] = X0; p.box[0][1] = Y0;
p.box[1][0] = X0 + L0; p.box[1][1] = Y0 + L0;
if (p.Delta == 0) p.Delta = L0/N;
}
if (p.linear) {
scalar f = p.f, mask = p.mask;
if (mask.i)
boundary ({f, mask});
else
boundary ({f});
}
double Delta = p.Delta;
int nx = (p.box[1][0] - p.box[0][0])/Delta;
int ny = (p.box[1][1] - p.box[0][1])/Delta;
// header
fprintf (p.fp, "ncols %d\n", nx);
fprintf (p.fp, "nrows %d\n", ny);
fprintf (p.fp, "xllcorner %g\n", p.box[0][0]);
fprintf (p.fp, "yllcorner %g\n", p.box[0][1]);
fprintf (p.fp, "cellsize %g\n", Delta);
fprintf (p.fp, "nodata_value -9999\n");
// data
for (int j = ny-1; j >= 0; j--) {
double yp = Delta*j + p.box[0][1] + Delta/2.;
for (int i = 0; i < nx; i++) {
double xp = Delta*i + p.box[0][0] + Delta/2., v;
if (p.mask.i) { // masking
if (p.linear) {
double m = interpolate (p.mask, xp, yp);
if (m < 0.)
v = nodata;
else
v = interpolate (p.f, xp, yp);
}
else {
Point point = locate (xp, yp);
if (point.level < 0 || p.mask[] < 0.)
v = nodata;
else
v = p.f[];
}
}
else if (p.linear)
v = interpolate (p.f, xp, yp);
else {
Point point = locate (xp, yp);
v = point.level >= 0 ? p.f[] : nodata;
}
if (v == nodata)
fprintf (p.fp, "-9999 ");
else
fprintf (p.fp, "%f ", v);
}
fprintf (p.fp, "\n");
}
fflush (p.fp);
}
#if MULTIGRID
output_gfs(): Gerris simulation format
The function writes simulation data in the format used in Gerris simulation files. These files can be read with GfsView.
The arguments and their default values are:
- fp
- a file pointer. Default is name or stdout.
- list
- a list of scalar fields to write. Default is all.
- file
- the name of the file to write to (mutually exclusive with fp).
- translate
- whether to replace “well-known” Basilisk variables with their Gerris equivalents.
struct OutputGfs {
FILE * fp;
scalar * list;
double t; // fixme: obsolete
char * file;
bool translate;
};
static char * replace (const char * input, int target, int with,
bool translate)
{
if (translate) {
if (!strcmp (input, "u.x"))
return strdup ("U");
if (!strcmp (input, "u.y"))
return strdup ("V");
if (!strcmp (input, "u.z"))
return strdup ("W");
}
char * name = strdup (input), * i = name;
while (*i != '\0') {
if (*i == target)
*i = with;
i++;
}
return name;
}
trace
void output_gfs (struct OutputGfs p)
{
char * fname = p.file;
@if _MPI
#if MULTIGRID_MPI
not_mpi_compatible();
#endif // !MULTIGRID_MPI
FILE * fp = p.fp;
if (p.file == NULL) {
long pid = getpid();
MPI_Bcast (&pid, 1, MPI_LONG, 0, MPI_COMM_WORLD);
fname = qmalloc (80, char);
snprintf (fname, 80, ".output-%ld", pid);
p.fp = NULL;
}
@endif // _MPI
bool opened = false;
if (p.fp == NULL) {
if (fname == NULL)
p.fp = stdout;
else if (!(p.fp = fopen (fname, "w"))) {
perror (fname);
exit (1);
}
else
opened = true;
}
scalar * list = p.list ? p.list : list_copy (all);
restriction (list);
fprintf (p.fp,
"1 0 GfsSimulation GfsBox GfsGEdge { binary = 1"
" x = %g y = %g ",
0.5 + X0/L0, 0.5 + Y0/L0);
#if dimension == 3
fprintf (p.fp, "z = %g ", 0.5 + Z0/L0);
#endif
if (list != NULL && list[0].i != -1) {
scalar s = list[0];
char * name = replace (s.name, '.', '_', p.translate);
fprintf (p.fp, "variables = %s", name);
free (name);
for (int i = 1; i < list_len(list); i++) {
scalar s = list[i];
if (s.name) {
char * name = replace (s.name, '.', '_', p.translate);
fprintf (p.fp, ",%s", name);
free (name);
}
}
fprintf (p.fp, " ");
}
fprintf (p.fp, "} {\n");
fprintf (p.fp, " Time { t = %g }\n", t);
if (L0 != 1.)
fprintf (p.fp, " PhysicalParams { L = %g }\n", L0);
fprintf (p.fp, " VariableTracerVOF f\n");
fprintf (p.fp, "}\nGfsBox { x = 0 y = 0 z = 0 } {\n");
@if _MPI
long header;
if ((header = ftell (p.fp)) < 0) {
perror ("output_gfs(): error in header");
exit (1);
}
int cell_size = sizeof(unsigned) + sizeof(double);
for (scalar s in list)
if (s.name)
cell_size += sizeof(double);
scalar index = new scalar;
size_t total_size = header + (z_indexing (index, false) + 1)*cell_size;
@endif
// see gerris/ftt.c:ftt_cell_write()
// gerris/domain.c:gfs_cell_write()
foreach_cell() {
@if _MPI // fixme: this won't work when combining MPI and mask()
if (is_local(cell))
@endif
{
@if _MPI
if (fseek (p.fp, header + index[]*cell_size, SEEK_SET) < 0) {
perror ("output_gfs(): error while seeking");
exit (1);
}
@endif
unsigned flags =
level == 0 ? 0 :
#if dimension == 1
child.x == 1;
#elif dimension == 2
child.x == -1 && child.y == -1 ? 0 :
child.x == -1 && child.y == 1 ? 1 :
child.x == 1 && child.y == -1 ? 2 :
3;
#else // dimension == 3
child.x == -1 && child.y == -1 && child.z == -1 ? 0 :
child.x == -1 && child.y == -1 && child.z == 1 ? 1 :
child.x == -1 && child.y == 1 && child.z == -1 ? 2 :
child.x == -1 && child.y == 1 && child.z == 1 ? 3 :
child.x == 1 && child.y == -1 && child.z == -1 ? 4 :
child.x == 1 && child.y == -1 && child.z == 1 ? 5 :
child.x == 1 && child.y == 1 && child.z == -1 ? 6 :
7;
#endif
if (is_leaf(cell))
flags |= (1 << 4);
fwrite (&flags, sizeof (unsigned), 1, p.fp);
double a = -1;
fwrite (&a, sizeof (double), 1, p.fp);
for (scalar s in list)
if (s.name) {
if (s.v.x.i >= 0) {
// this is a vector component, we need to rotate from
// N-ordering (Basilisk) to Z-ordering (Gerris)
// fixme: this does not work for tensors
#if dimension >= 2
if (s.v.x.i == s.i) {
s = s.v.y;
a = is_local(cell) && s[] != nodata ? s[] : (double) DBL_MAX;
}
else if (s.v.y.i == s.i) {
s = s.v.x;
a = is_local(cell) && s[] != nodata ? - s[] : (double) DBL_MAX;
}
#endif
#if dimension >= 3
else
a = is_local(cell) && s[] != nodata ? s[] : (double) DBL_MAX;
#endif
}
else
a = is_local(cell) && s[] != nodata ? s[] : (double) DBL_MAX;
fwrite (&a, sizeof (double), 1, p.fp);
}
}
if (is_leaf(cell))
continue;
}
@if _MPI
delete ({index});
if (!pid() && fseek (p.fp, total_size, SEEK_SET) < 0) {
perror ("output_gfs(): error while finishing");
exit (1);
}
if (!pid())
@endif
fputs ("}\n", p.fp);
fflush (p.fp);
if (!p.list)
free (list);
if (opened)
fclose (p.fp);
@if _MPI
if (p.file == NULL) {
MPI_Barrier (MPI_COMM_WORLD);
if (pid() == 0) {
if (fp == NULL)
fp = stdout;
p.fp = fopen (fname, "r");
size_t l;
unsigned char buffer[8192];
while ((l = fread (buffer, 1, 8192, p.fp)) > 0)
fwrite (buffer, 1, l, fp);
fflush (fp);
remove (fname);
}
free (fname);
}
@endif // _MPI
}
dump(): Basilisk snapshots
This function (together with restore()) can be used to dump/restore entire simulations.
The arguments and their default values are:
- file
- the name of the file to write to (mutually exclusive with fp). The default is “dump”.
- list
- a list of scalar fields to write. Default is all.
- fp
- a file pointer. Default is stdout.
- unbuffered
- whether to use a file buffer. Default is false.
struct Dump {
char * file;
scalar * list;
FILE * fp;
bool unbuffered;
};
struct DumpHeader {
double t;
long len;
int i, depth, npe, version;
coord n;
};
static const int dump_version =
// 161020
170901;
static scalar * dump_list (scalar * lista)
{
scalar * list = is_constant(cm) ? NULL : list_concat ({cm}, NULL);
for (scalar s in lista)
if (!s.face && !s.nodump && s.i != cm.i)
list = list_add (list, s);
return list;
}
static void dump_header (FILE * fp, struct DumpHeader * header, scalar * list)
{
if (fwrite (header, sizeof(struct DumpHeader), 1, fp) < 1) {
perror ("dump(): error while writing header");
exit (1);
}
for (scalar s in list) {
unsigned len = strlen(s.name);
if (fwrite (&len, sizeof(unsigned), 1, fp) < 1) {
perror ("dump(): error while writing len");
exit (1);
}
if (fwrite (s.name, sizeof(char), len, fp) < len) {
perror ("dump(): error while writing s.name");
exit (1);
}
}
double o[4] = {X0,Y0,Z0,L0};
if (fwrite (o, sizeof(double), 4, fp) < 4) {
perror ("dump(): error while writing coordinates");
exit (1);
}
}
@if !_MPI
trace
void dump (struct Dump p)
{
FILE * fp = p.fp;
char def[] = "dump", * file = p.file ? p.file : p.fp ? NULL : def;
char * name = NULL;
if (file) {
name = (char *) malloc (strlen(file) + 2);
strcpy (name, file);
if (!p.unbuffered)
strcat (name, "~");
if ((fp = fopen (name, "w")) == NULL) {
perror (name);
exit (1);
}
}
assert (fp);
scalar * dlist = dump_list (p.list ? p.list : all);
scalar size[];
scalar * list = list_concat ({size}, dlist); free (dlist);
struct DumpHeader header = { t, list_len(list), iter, depth(), npe(),
dump_version };
dump_header (fp, &header, list);
subtree_size (size, false);
foreach_cell() {
unsigned flags = is_leaf(cell) ? leaf : 0;
if (fwrite (&flags, sizeof(unsigned), 1, fp) < 1) {
perror ("dump(): error while writing flags");
exit (1);
}
for (scalar s in list)
if (fwrite (&s[], sizeof(double), 1, fp) < 1) {
perror ("dump(): error while writing scalars");
exit (1);
}
if (is_leaf(cell))
continue;
}
free (list);
if (file) {
fclose (fp);
if (!p.unbuffered)
rename (name, file);
free (name);
}
}
@else // _MPI
trace
void dump (struct Dump p)
{
FILE * fp = p.fp;
char def[] = "dump", * file = p.file ? p.file : p.fp ? NULL : def;
if (fp != NULL || file == NULL) {
fprintf (ferr, "dump(): must specify a file name when using MPI\n");
exit(1);
}
char name[strlen(file) + 2];
strcpy (name, file);
if (!p.unbuffered)
strcat (name, "~");
FILE * fh = fopen (name, "w");
if (fh == NULL) {
perror (name);
exit (1);
}
scalar * dlist = dump_list (p.list ? p.list : all);
scalar size[];
scalar * list = list_concat ({size}, dlist); free (dlist);
struct DumpHeader header = { t, list_len(list), iter, depth(), npe(),
dump_version };
#if MULTIGRID_MPI
for (int i = 0; i < dimension; i++)
(&header.n.x)[i] = mpi_dims[i];
MPI_Barrier (MPI_COMM_WORLD);
#endif
if (pid() == 0)
dump_header (fh, &header, list);
scalar index = {-1};
index = new scalar;
z_indexing (index, false);
int cell_size = sizeof(unsigned) + header.len*sizeof(double);
int sizeofheader = sizeof(header) + 4*sizeof(double);
for (scalar s in list)
sizeofheader += sizeof(unsigned) + sizeof(char)*strlen(s.name);
long pos = pid() ? 0 : sizeofheader;
subtree_size (size, false);
foreach_cell() {
// fixme: this won't work when combining MPI and mask()
if (is_local(cell)) {
long offset = sizeofheader + index[]*cell_size;
if (pos != offset) {
fseek (fh, offset, SEEK_SET);
pos = offset;
}
unsigned flags = is_leaf(cell) ? leaf : 0;
fwrite (&flags, 1, sizeof(unsigned), fh);
for (scalar s in list)
fwrite (&s[], 1, sizeof(double), fh);
pos += cell_size;
}
if (is_leaf(cell))
continue;
}
delete ({index});
free (list);
fclose (fh);
if (!p.unbuffered && pid() == 0)
rename (name, file);
}
@endif // _MPI
trace
bool restore (struct Dump p)
{
FILE * fp = p.fp;
char * file = p.file;
if (file && (fp = fopen (file, "r")) == NULL)
return false;
assert (fp);
struct DumpHeader header = {0};
if (fread (&header, sizeof(header), 1, fp) < 1) {
fprintf (ferr, "restore(): error: expecting header\n");
exit (1);
}
#if TREE
init_grid (1);
foreach_cell() {
cell.pid = pid();
cell.flags |= active;
}
tree->dirty = true;
#else // multigrid
#if MULTIGRID_MPI
if (header.npe != npe()) {
fprintf (ferr,
"restore(): error: the number of processes don't match:"
" %d != %d\n",
header.npe, npe());
exit (1);
}
dimensions (header.n.x, header.n.y, header.n.z);
double n = header.n.x;
int depth = header.depth;
while (n > 1)
depth++, n /= 2;
init_grid (1 << depth);
#else // !MULTIGRID_MPI
init_grid (1 << header.depth);
#endif
#endif // multigrid
bool restore_all = (p.list == all);
scalar * list = dump_list (p.list ? p.list : all);
if (header.version == 161020) {
if (header.len - 1 != list_len (list)) {
fprintf (ferr,
"restore(): error: the list lengths don't match: "
"%ld (file) != %d (code)\n",
header.len - 1, list_len (list));
exit (1);
}
}
else { // header.version != 161020
if (header.version != dump_version) {
fprintf (ferr,
"restore(): error: file version mismatch: "
"%d (file) != %d (code)\n",
header.version, dump_version);
exit (1);
}
scalar * input = NULL;
for (int i = 0; i < header.len; i++) {
unsigned len;
if (fread (&len, sizeof(unsigned), 1, fp) < 1) {
fprintf (ferr, "restore(): error: expecting len\n");
exit (1);
}
char name[len + 1];
if (fread (name, sizeof(char), len, fp) < 1) {
fprintf (ferr, "restore(): error: expecting s.name\n");
exit (1);
}
name[len] = '\0';
if (i > 0) { // skip subtree size
bool found = false;
for (scalar s in list)
if (!strcmp (s.name, name)) {
input = list_append (input, s);
found = true; break;
}
if (!found) {
if (restore_all) {
scalar s = new scalar;
free (s.name);
s.name = strdup (name);
input = list_append (input, s);
}
else
input = list_append (input, (scalar){INT_MAX});
}
}
}
free (list);
list = input;
double o[4];
if (fread (o, sizeof(double), 4, fp) < 4) {
fprintf (ferr, "restore(): error: expecting coordinates\n");
exit (1);
}
origin (o[0], o[1], o[2]);
size (o[3]);
}
#if MULTIGRID_MPI
long cell_size = sizeof(unsigned) + header.len*sizeof(double);
long offset = pid()*((1 << dimension*(header.depth + 1)) - 1)/
((1 << dimension) - 1)*cell_size;
if (fseek (fp, offset, SEEK_CUR) < 0) {
perror ("restore(): error while seeking");
exit (1);
}
#endif // MULTIGRID_MPI
scalar * listm = is_constant(cm) ? NULL : (scalar *){fm};
#if TREE && _MPI
restore_mpi (fp, list);
#else
foreach_cell() {
unsigned flags;
if (fread (&flags, sizeof(unsigned), 1, fp) != 1) {
fprintf (ferr, "restore(): error: expecting 'flags'\n");
exit (1);
}
// skip subtree size
fseek (fp, sizeof(double), SEEK_CUR);
for (scalar s in list) {
double val;
if (fread (&val, sizeof(double), 1, fp) != 1) {
fprintf (ferr, "restore(): error: expecting a scalar\n");
exit (1);
}
if (s.i != INT_MAX)
s[] = val;
}
if (!(flags & leaf) && is_leaf(cell))
refine_cell (point, listm, 0, NULL);
if (is_leaf(cell))
continue;
}
for (scalar s in all)
s.dirty = true;
#endif
scalar * other = NULL;
for (scalar s in all)
if (!list_lookup (list, s) && !list_lookup (listm, s))
other = list_append (other, s);
reset (other, 0.);
free (other);
free (list);
if (file)
fclose (fp);
// the events are advanced to catch up with the time
while (iter < header.i && events (false))
iter = inext;
events (false);
while (t < header.t && events (false))
t = tnext;
t = header.t;
events (false);
return true;
}
#endif // MULTIGRID