1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
| typedef double real;
#define GRIDNAME "Cartesian 1D"
#define dimension 1
#define GHOSTS 1
#define _I (point.i - 1)
#define _DELTA (1./point.n)
typedef struct {
Grid g;
char * d;
int n;
} Cartesian;
struct _Point {
int i, j, level, n;
};
static Point last_point;
#define cartesian ((Cartesian *)grid)
@define data(k,l,m) ((double *)&cartesian->d[(point.i + k)*datasize])
@define allocated(...) true
@define POINT_VARIABLES VARIABLES
@def foreach()
OMP_PARALLEL() {
int ig = 0, jg = 0; NOT_UNUSED(ig); NOT_UNUSED(jg);
Point point;
point.n = cartesian->n;
int _k;
OMP(omp for schedule(static))
for (_k = 1; _k <= point.n; _k++) {
point.i = _k;
POINT_VARIABLES
@
@define end_foreach() }}
@def foreach_face_generic()
OMP_PARALLEL() {
int ig = 0, jg = 0; NOT_UNUSED(ig); NOT_UNUSED(jg);
Point point;
point.n = cartesian->n;
int _k;
OMP(omp for schedule(static))
for (_k = 1; _k <= point.n + 1; _k++) {
point.i = _k;
POINT_VARIABLES
@
@define end_foreach_face_generic() }}
@def foreach_vertex()
foreach_face_generic() {
x -= Delta/2.;
@
@define end_foreach_vertex() } end_foreach_face_generic()
@define is_face_x() { int ig = -1; VARIABLES; {
@define end_is_face_x() }}
// ghost cell coordinates for each direction
static int _ig[] = {1,-1};
// Box boundaries
static void box_boundary_level_normal (const Boundary * b, scalar * list, int l)
{
if (!list)
return;
int d = ((BoxBoundary *)b)->d;
Point point;
point.n = cartesian->n;
ig = _ig[d];
assert (d <= left);
point.i = d == right ? point.n + GHOSTS : GHOSTS;
Point neighbor = {point.i + ig};
for (scalar s in list) {
scalar b = s.v.x;
val(s,ig) = b.boundary[d] (point, neighbor, s, NULL);
}
}
static double periodic_bc (Point point, Point neighbor, scalar s, bool * data);
static void box_boundary_level (const Boundary * b, scalar * list, int l)
{
int d = ((BoxBoundary *)b)->d;
scalar * centered = NULL, * normal = NULL;
int component = d/2;
for (scalar s in list)
if (!is_constant(s) && s.boundary[d] != periodic_bc) {
if (s.face) {
if ((&s.d.x)[component]) {
scalar b = s.v.x;
if (b.boundary[d])
normal = list_add (normal, s);
}
}
else if (s.boundary[d])
centered = list_add (centered, s);
}
if (centered) {
Point point;
point.n = cartesian->n;
ig = _ig[d];
point.i = d == right ? point.n + GHOSTS - 1 : GHOSTS;
Point neighbor = {point.i + ig};
for (scalar s in centered)
val(s,ig) = s.boundary[d] (point, neighbor, s, NULL);
free (centered);
}
box_boundary_level_normal (b, normal, l);
free (normal);
}
// periodic boundaries
static void periodic_boundary_level_x (const Boundary * b, scalar * list, int l)
{
scalar * list1 = NULL;
for (scalar s in list)
if (!is_constant(s) && s.boundary[right] == periodic_bc)
list1 = list_add (list1, s);
if (!list1)
return;
Point point = *((Point *)grid);
point.i = 0, point.n = N;
for (int i = 0; i < GHOSTS; i++)
for (scalar s in list1)
s[i] = s[i + point.n];
for (int i = point.n + GHOSTS; i < point.n + 2*GHOSTS; i++)
for (scalar s in list1)
s[i] = s[i - point.n];
free (list1);
}
void free_grid (void)
{
if (!grid)
return;
free_boundaries();
free (cartesian->d);
free (cartesian);
grid = NULL;
}
@if TRASH
@ undef trash
@ define trash(list) reset(list, undefined)
@endif
void reset (void * alist, double val)
{
scalar * list = (scalar *) alist;
char * data = cartesian->d;
for (int i = 0; i < cartesian->n + 2; i++, data += datasize) {
double * v = (double *) data;
for (scalar s in list)
if (!is_constant(s))
v[s.i] = val;
}
}
void init_grid (int n)
{
if (cartesian && n == cartesian->n)
return;
free_grid();
Cartesian * p = qmalloc (1, Cartesian);
size_t len = (n + 2)*datasize;
p->n = N = n;
p->d = qmalloc (len, char);
/* trash the data just to make sure it's either explicitly
initialised or never touched */
double * v = (double *) p->d;
for (int i = 0; i < len/sizeof(double); i++)
v[i] = undefined;
grid = (Grid *) p;
reset (all, 0.);
// box boundaries
for (int d = 0; d < 2; d++) {
BoxBoundary * box = qcalloc (1, BoxBoundary);
box->d = d;
Boundary * b = (Boundary *) box;
b->level = box_boundary_level;
add_boundary (b);
}
// periodic boundaries
Boundary * b = qcalloc (1, Boundary);
b->level = periodic_boundary_level_x;
add_boundary (b);
// mesh size
grid->n = grid->tn = n;
}
void realloc_scalar (int size)
{
Cartesian * p = cartesian;
size_t len = (p->n + 2);
qrealloc (p->d, len*(datasize + size), char);
char * data = p->d + (len - 1)*datasize;
for (int i = p->n + 1; i > 0; i--, data -= datasize)
memmove (data + i*size, data, datasize);
datasize += size;
}
Point locate (double xp = 0, double yp = 0, double zp = 0)
{
Point point;
point.n = cartesian->n;
double a = (xp - X0)/L0*point.n;
point.i = a + 1;
point.level = (a > -0.5 && a < point.n + 0.5) ? 0 : - 1;
return point;
}
#include "cartesian-common.h"
void cartesian1D_methods()
{
cartesian_methods();
}
|