1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
| #if SINGLE_PRECISION
typedef float real;
#else
typedef double real;
#endif
#ifndef GRIDNAME
# define GRIDNAME "Cartesian"
#endif
#define dimension 2
#define GHOSTS 1
#define _I (point.i - 1)
#define _J (point.j - 1)
#define _DELTA (1./N)
typedef struct {
Grid g;
char * d;
int n;
} Cartesian;
struct _Point {
int i, j, level, n;
@ifdef foreach_block
int l;
@define _BLOCK_INDEX , point.l
@else
@define _BLOCK_INDEX
@endif
};
static Point last_point;
#define cartesian ((Cartesian *)grid)
@undef val
@define val(a,k,l,m) (((real *)cartesian->d)[(point.i + k + _index(a,m)*(point.n + 2))*(point.n + 2) + point.j + l])
@define allocated(...) true
@define POINT_VARIABLES VARIABLES
@def foreach()
OMP_PARALLEL() {
int ig = 0, jg = 0; NOT_UNUSED(ig); NOT_UNUSED(jg);
Point point = {0};
point.n = cartesian->n;
int _k;
OMP(omp for schedule(static))
for (_k = 1; _k <= point.n; _k++) {
point.i = _k;
for (point.j = 1; point.j <= point.n; point.j++) {
POINT_VARIABLES
@
@define end_foreach() }}}
@def foreach_face_generic()
OMP_PARALLEL() {
int ig = 0, jg = 0; NOT_UNUSED(ig); NOT_UNUSED(jg);
Point point = {0};
point.n = cartesian->n;
int _k;
OMP(omp for schedule(static))
for (_k = 1; _k <= point.n + 1; _k++) {
point.i = _k;
for (point.j = 1; point.j <= point.n + 1; point.j++) {
POINT_VARIABLES
@
@define end_foreach_face_generic() }}}
@def foreach_vertex()
foreach_face_generic() {
x -= Delta/2.; y -= Delta/2.;
@
@define end_foreach_vertex() } end_foreach_face_generic()
#define foreach_edge() foreach_face(y,x)
@define is_face_x() { int ig = -1; VARIABLES; if (point.j <= point.n) {
@define end_is_face_x() }}
@define is_face_y() { int jg = -1; VARIABLES; if (point.i <= point.n) {
@define end_is_face_y() }}
@if TRASH
@ undef trash
@ define trash(list) reset(list, undefined)
@endif
#include "neighbors.h"
void reset (void * alist, double val)
{
scalar * list = (scalar *) alist;
size_t len = sq(cartesian->n + 2);
for (scalar s in list)
if (!is_constant(s))
for (int i = 0; i < len; i++)
((real *)cartesian->d)[i + s.i*len] = val;
}
// Boundaries
@def foreach_boundary_dir(l,d)
OMP_PARALLEL() {
int ig = 0, jg = 0, kg = 0; NOT_UNUSED(ig); NOT_UNUSED(jg); NOT_UNUSED(kg);
Point point = {0};
point.n = cartesian->n;
int * _i = &point.j;
if (d == left) {
point.i = GHOSTS;
ig = -1;
}
else if (d == right) {
point.i = point.n + GHOSTS - 1;
ig = 1;
}
else if (d == bottom) {
point.j = GHOSTS;
_i = &point.i;
jg = -1;
}
else if (d == top) {
point.j = point.n + GHOSTS - 1;
_i = &point.i;
jg = 1;
}
int _l;
OMP(omp for schedule(static))
for (_l = 0; _l < point.n + 2*GHOSTS; _l++) {
*_i = _l;
{
POINT_VARIABLES
@
@def end_foreach_boundary_dir()
}
}
}
@
@define neighbor(o,p,q) ((Point){point.i+o, point.j+p, point.level, point.n})
@def is_boundary(point) (point.i < GHOSTS || point.i >= point.n + GHOSTS ||
point.j < GHOSTS || point.j >= point.n + GHOSTS)
@
// ghost cell coordinates for each direction
static int _ig[] = {1,-1,0,0}, _jg[] = {0,0,1,-1};
static void box_boundary_level_normal (const Boundary * b, scalar * list, int l)
{
int d = ((BoxBoundary *)b)->d;
OMP_PARALLEL() {
Point point = {0};
point.n = cartesian->n;
if (d % 2)
ig = jg = 0;
else {
ig = _ig[d]; jg = _jg[d];
}
int _start = GHOSTS, _end = point.n + GHOSTS, _k;
OMP(omp for schedule(static))
for (_k = _start; _k < _end; _k++) {
point.i = d > left ? _k : d == right ? point.n + GHOSTS - 1 : GHOSTS;
point.j = d < top ? _k : d == top ? point.n + GHOSTS - 1 : GHOSTS;
Point neighbor = {point.i + ig, point.j + jg};
for (scalar s in list) {
scalar b = s.v.x;
val(s,ig,jg) = b.boundary[d] (point, neighbor, s, NULL);
}
}
}
}
static void box_boundary_level_tangent (const Boundary * b,
scalar * list, int l)
{
int d = ((BoxBoundary *)b)->d;
OMP_PARALLEL() {
Point point = {0};
point.n = cartesian->n;
ig = _ig[d]; jg = _jg[d];
int _start = GHOSTS, _end = point.n + 2*GHOSTS, _k;
OMP(omp for schedule(static))
for (_k = _start; _k < _end; _k++) {
point.i = d > left ? _k : d == right ? point.n + GHOSTS - 1 : GHOSTS;
point.j = d < top ? _k : d == top ? point.n + GHOSTS - 1 : GHOSTS;
Point neighbor = {point.i + ig, point.j + jg};
for (scalar s in list) {
scalar b = s.v.y;
val(s,ig,jg) = b.boundary[d] (point, neighbor, s, NULL);
}
}
}
}
@def foreach_boundary(b)
if (default_scalar_bc[b] != periodic_bc)
foreach_boundary_dir (depth(), b)
if (!is_boundary(point)) {
@
@define end_foreach_boundary() } end_foreach_boundary_dir()
static double periodic_bc (Point point, Point neighbor, scalar s, bool * data);
static void box_boundary_level (const Boundary * b, scalar * list, int l)
{
int d = ((BoxBoundary *)b)->d;
scalar * centered = NULL, * normal = NULL, * tangent = NULL;
int component = d/2;
for (scalar s in list)
if (!is_constant(s)) {
if (s.face) {
if ((&s.d.x)[component]) {
scalar b = s.v.x;
if (b.boundary[d] && b.boundary[d] != periodic_bc)
normal = list_add (normal, s);
}
else {
scalar b = s.v.y;
if (b.boundary[d] && b.boundary[d] != periodic_bc)
tangent = list_add (tangent, s);
}
}
else if (s.boundary[d] && s.boundary[d] != periodic_bc)
centered = list_add (centered, s);
}
OMP_PARALLEL() {
Point point = {0};
point.n = cartesian->n;
ig = _ig[d]; jg = _jg[d];
int _start = 1, _end = point.n, _k;
/* traverse corners only for top and bottom */
if (d > left) { _start--; _end++; }
OMP(omp for schedule(static))
for (_k = _start; _k <= _end; _k++) {
point.i = d > left ? _k : d == right ? point.n : 1;
point.j = d < top ? _k : d == top ? point.n : 1;
Point neighbor = {point.i + ig, point.j + jg};
for (scalar s in centered) {
scalar b = (s.v.x.i < 0 ? s :
s.i == s.v.x.i && d < top ? s.v.x :
s.i == s.v.y.i && d >= top ? s.v.x :
s.v.y);
val(s,ig,jg) = b.boundary[d] (point, neighbor, s, NULL);
}
}
}
free (centered);
box_boundary_level_normal (b, normal, l);
free (normal);
box_boundary_level_tangent (b, tangent, l);
free (tangent);
}
/* Periodic boundaries */
#if !_MPI
@define VT _attribute[s.i].v.y
foreach_dimension()
static void periodic_boundary_level_x (const Boundary * b, scalar * list, int l)
{
scalar * list1 = NULL;
for (scalar s in list)
if (!is_constant(s) && s.block > 0) {
if (s.face) {
scalar vt = VT;
if (vt.boundary[right] == periodic_bc)
list1 = list_add (list1, s);
}
else if (s.boundary[right] == periodic_bc)
list1 = list_add (list1, s);
}
if (!list1)
return;
OMP_PARALLEL() {
Point point = {0};
point.n = cartesian->n;
int j;
OMP(omp for schedule(static))
for (j = 0; j < point.n + 2*GHOSTS; j++) {
for (int i = 0; i < GHOSTS; i++)
for (scalar s in list1)
memcpy (&s[i,j], &s[i + point.n,j], s.block*sizeof(real));
for (int i = point.n + GHOSTS; i < point.n + 2*GHOSTS; i++)
for (scalar s in list1)
memcpy (&s[i,j], &s[i - point.n,j], s.block*sizeof(real));
}
}
free (list1);
}
@undef VT
#endif // !_MPI
void free_grid (void)
{
if (!grid)
return;
free_boundaries();
free (cartesian->d);
free (cartesian);
grid = NULL;
}
void init_grid (int n)
{
if (cartesian && n == cartesian->n)
return;
free_grid();
Cartesian * p = qmalloc (1, Cartesian);
size_t len = (n + 2)*(n + 2)*datasize;
p->n = N = n;
p->d = qmalloc (len, char);
grid = (Grid *) p;
reset (all, 0.);
for (int d = 0; d < nboundary; d++) {
BoxBoundary * box = qcalloc (1, BoxBoundary);
box->d = d;
Boundary * b = (Boundary *) box;
b->level = box_boundary_level;
add_boundary (b);
}
// periodic boundaries
foreach_dimension() {
Boundary * b = qcalloc (1, Boundary);
b->level = periodic_boundary_level_x;
add_boundary (b);
}
// mesh size
grid->n = grid->tn = sq(n);
}
void realloc_scalar (int size)
{
Cartesian * p = cartesian;
datasize += size;
qrealloc (p->d, (p->n + 2)*(p->n + 2)*datasize, char);
}
Point locate (double xp = 0, double yp = 0, double zp = 0)
{
Point point;
point.n = cartesian->n;
point.i = (xp - X0)/L0*point.n + 1;
point.j = (yp - Y0)/L0*point.n + 1;
point.level = (point.i >= 1 && point.i <= point.n &&
point.j >= 1 && point.j <= point.n) ? 0 : - 1;
return point;
}
#if !_GPU
#include "cartesian-common.h"
#endif
|