src/examples/inversion.c

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79
    80
    81
    82
    83
    84
    85
    86
    87
    88
    89
    90
    91
    92
    93
    94
    95
    96
    97
    98
    99
    100
    101
    102
    103
    104
    105
    106
    107
    108
    109
    110
    111
    112
    113
    114
    115
    116
    117
    118
    119
    120
    121
    122
    123
    124
    125
    126
    127
    128
    129
    130
    131
    132
    133
    134
    135
    136
    137
    138
    139
    140
    141
    142
    143
    144
    145
    146
    147
    148
    149
    150
    151
    152
    153
    154
    155
    156
    157
    158
    159
    160
    161
    162
    163
    164
    165
    166
    167
    168
    169
    170
    171
    172
    173
    174
    175
    176
    177
    178
    179
    180
    181
    182
    183
    184
    185
    186
    187
    188
    189
    190
    191
    192
    193
    194
    195
    196
    197
    198
    199
    200
    201
    202
    203
    204
    205
    206
    207
    208
    209
    210
    211
    212
    213
    214
    215
    216
    217
    218
    219
    220
    221
    222
    223
    224
    225
    226
    227
    228
    229
    230
    231
    232
    233
    
    // #include "grid/multigrid3D.h"
    #include "grid/octree.h"
    #include "navier-stokes/centered.h"
    #include "vof.h"
    #include "tension.h"
    
    scalar f[], * interfaces = {f};
    
    #define rho1 900.
    #define rho2 1000.
    #define mu1  0.1
    #define mu2  0.001
    #define rho(f) (clamp(f,0,1)*(rho1 - rho2) + rho2)
    #define mu(f) (1./(clamp(f,0,1)*(1./(mu1) - 1./(mu2)) + 1./(mu2)))
    
    #define H 0.1
    #define G 9.81
    #define Ug ((rho2 - rho1)/rho1*sqrt(H*G/2.))
    #define tc (H/(2.*Ug))
    
    face vector alphav[], muv[], av[];
    scalar rhov[];
    
    int maxlevel = 6;
    
    #if 0
    uf.n[left] = 0.;
    uf.n[right] = 0.;
    p[left] = neumann(0);
    p[right] = neumann(0);
    
    f[top] = 0.;
    f[right] = 0.;
    f[left] = 0.;
    f[bottom] = 0.;
    
    #if dimension == 3
    f[front] = 0.;
    f[back] = 0.;
    #endif
    #endif
    
    timer tt;
    
    int main (int argc, char * argv[]) {
      maxlevel = argc > 1 ? atoi(argv[1]) : 7;
      size (H);
      origin (-H/2., -H/2., -H/2.);
    #if !TREE
      N = 1 << maxlevel;
    #endif
      a = av;
      mu = muv;
      alpha = alphav;
      rho = rhov;
      f.sigma = 0.045;
      DT = 2e-2;
      tt = timer_start();
      run();
    }
    
    event init (i = 0) {
    #if TREE
      scalar f1[];
      foreach()
        f1[] = (x <= 0 && y <= 0 && z <= 0);
      astats s;
      do {
        s = adapt_wavelet ({f1}, (double[]){0.0}, maxlevel, list = NULL);
        foreach()
          f1[] = (x <= 0 && y <= 0 && z <= 0);
      } while (s.nf);
      foreach()
        f[] = (x <= 0 && y <= 0 && z <= 0);
    #else
      foreach()
        f[] = (x <= 0 && y <= 0 && z <= 0);
    #endif
    }
    
    event acceleration (i++) {
      foreach_face(y)
        av.y[] -= G;
    }
    
    event properties (i++) {
    #if TREE
      f.prolongation = refine_bilinear;
      f.dirty = true;
    #endif
    
      foreach_face() {
        double ff = (f[] + f[-1])/2.;
        alphav.x[] = fm.x[]/rho(ff);
        muv.x[] = fm.x[]*mu(ff);
      }
      foreach()
        rhov[] = cm[]*rho(f[]);
    
    #if TREE
      f.prolongation = fraction_refine;
      f.dirty = true;
    #endif
    }
    
    event logfile (i++; t <= 20) {
      double ke1 = 0., ke2 = 0., vd = 0., vol1 = 0.;
      double ep1 = 0., ep2 = 0.;
      double er1 = 0., er2 = 0.;
      double area = 0.;
      int nc = 0;
      static long tnc = 0;
      foreach(reduction(+:ke1) reduction(+:ke2) reduction(+:vd)
    	  reduction(+:vol1) reduction(+:ep1) reduction(+:ep2)
    	  reduction(+:er1) reduction(+:er2) reduction(+:area)
    	  reduction(+:nc)) {
        if (y > H/2. - H/8.)
          vol1 += f[]*dv();
        ep1 += rho1*f[]*G*(y + H/2.)*dv();
        ep2 += rho2*(1. - f[])*G*(y + H/2.)*dv();
        // interfacial area
        if (f[] > 1e-4 && f[] < 1. - 1e-4) {
          coord m = mycs (point, f);
          double alpha = plane_alpha (f[], m);
          coord p;
          area += sq(Delta)*plane_area_center (m, alpha, &p);
        }
        double w2 = 0.;
        foreach_dimension() {
          // kinetic energy
          ke1 += dv()*f[]*rho1*sq(u.x[]);
          ke2 += dv()*(1. - f[])*rho2*sq(u.x[]);
          // viscous dissipation
          vd += dv()*(sq(u.x[1] - u.x[-1]) +
    		  sq(u.x[0,1] - u.x[0,-1]) +
    		  sq(u.x[0,0,1] - u.x[0,0,-1]))/sq(2.*Delta);
          // enstrophy
          w2 += sq(u.x[0,1] - u.x[0,-1] - u.y[1,0] + u.y[-1,0]);
        }
        w2 /= sq(2.*Delta);
        er1 += dv()*f[]*w2;
        er2 += dv()*(1. - f[])*w2;
        nc++;
      }
      ke1 /= 2.;
      ke2 /= 2.;
      er1 /= 2.;
      er2 /= 2.;
      //  vd *= MU/vol;
    
      if (i == 0)
        fprintf (stderr,
    	     "t ke1 ke2 ep1 ep2 er1 er2 R2 area mgp.i mgu.i nc time speed\n");
      double elapsed = timer_elapsed (tt);
      tnc += nc;
      fprintf (stderr, "%g %g %g %g %g %g %g %g %g %d %d %d %g %g\n",
    	   t/tc,
    	   ke1/(1./16.*rho1*sq(Ug)*cube(H)),
    	   ke2/(1./16.*rho2*sq(Ug)*cube(H)),
    	   ep1/(rho1*G*15.*sq(H)*sq(H)/128.),
    	   ep2/(rho2*G*49.*sq(H)*sq(H)/128.),
    	   er1/0.0733,
    	   er2/1.3759,
    	   8.*vol1/cube(H),
    	   area,
    	   mgp.i, mgu.i, nc, elapsed, tnc/elapsed);
    #if 0
      nc = 0;
      foreach()
        nc++;
      fprintf (stderr, "nc: %d\n", nc);
      fflush (stderr);
    #endif
    }
    
    #if 0
    event movies (t += 0.1*tc) {
      char name[80];
      sprintf (name, "f-%d.ppm", maxlevel);
      static FILE * fp = fopen (name, "w");
      output_ppm (f, fp, min = 0, max = 1, n = 256);
    }
    #endif
    
    #if !_MPI
    event gfsview (i += 10) {
      scalar pid[];
      foreach()
        pid[] = tid();
    #if dimension == 3
      static FILE * fp = popen ("gfsview3D inversion.gfv", "w");
    #else
      static FILE * fp = popen ("gfsview2D inversion2D.gfv", "w");
    #endif
      output_gfs (fp);
    }
    #endif
    
    #if 0 //TREE && !_MPI
    event gfsview (t += 0.1*tc) {
    @if _MPI
      char name[80];
      sprintf (name, "output-%g.gfs", t);
      FILE * fp = fopen (name, "w");
    @else
      static FILE * fp =
        popen ("gfsview3D ../inversion.gfv", "w");
    @endif
      output_gfs (fp, translate = true);
    @if _MPI
      fclose (fp);
    @endif
      //  fprintf (fp, "Save stdout { format = PPM width = 512 height = 512 }\n");
    }
    #endif
    
    #if 0
    event snapshot (i = 100; i += 100) {
      dump (file = "snapshot", t = t);
      char name[80];
      sprintf (name, "snapshot-%d.gfs", i);
      scalar pid[];
      foreach()
        pid[] = tid();
      output_gfs (file = name);
    }
    #endif
    
    #if TREE
    event adapt (i++) {
      adapt_wavelet ({f,u}, (double[]){0.005,0.005,0.005,0.005}, maxlevel);
    }
    #endif