src/compressible/thermal.h
Thermal effects extension for the compressible two-phase solver
This extension of the two-phase compressible solver is described in detail in Saade et al, 2023.
This solves the two-phase compressible Navier-Stokes equations including the total energy equation. \displaystyle \frac{\partial (f \rho_i)}{\partial t } + \nabla \cdot (f \rho_i \mathbf{u}) = 0 \displaystyle \frac{\partial (\rho_i \mathbf{u})}{\partial t } + \nabla \cdot ( \rho_i \mathbf{u} \mathbf{u}) = -\nabla p + \nabla \cdot \tau_i' \displaystyle \frac{\partial [\rho_i (e_i + \mathbf{u}^2/2)]}{\partial t } + \nabla \cdot [ \rho_i \mathbf{u} (e_i + \mathbf{u}^2/2)] = -\nabla \cdot (\mathbf{u} p_i) + \nabla \cdot \left( \tau'_i \mathbf{u} \right) {\color{blue} - \nabla \cdot \mathbf{q}_i} an advection equation for the volume fraction f \displaystyle \frac{\partial f}{\partial t} + \mathbf{u} \cdot \nabla f = 0
The term in blue in the energy equation is the heat flux which is added by this extension. The other terms are treated by the two-phase compressible solver. The heat flux is given by Fourier’s relation as \displaystyle \nabla \cdot \mathbf{q}_i = - \kappa_i \nabla T_i where \kappa_i is the thermal conductivity and T is the temperature field.
The temperature and pressure fields are then coupled through the two equations (8 and 10 in Saade et al, 2023) \displaystyle \rho_ic_{p,i}\frac{DT_i}{Dt} = \beta_iT_i\frac{Dp_i}{Dt} - \nabla\cdot\mathbf{q}_i with c_p the specific heat capacity and \beta the thermal expansion coefficient. \displaystyle \left(\frac{\gamma_i}{\rho_ic_i^2} - \frac{\beta_i^2T_i}{\rho_ic_{p,i}}\right)\frac{Dp_i}{Dt} = -\frac{\beta_i}{\rho_ic_{p,i}}\nabla\cdot\mathbf{q}_i - \nabla\cdot\mathbf{u}_i with \gamma the ratio of specific heats.
The system is closed by specifying an Equation Of State (EOS) relating p, \rho and T.
In addition to the primary variables of the compressible two-phase solver we have the temperature field…
scalar T[];
… and the thermal conductivities and specific heat capacities.
double kappa1 = 0., kappa2 = 0.;
double cp1 = 0., cp2 = 0.;
These functions are provided by the Equation Of State. See for example the Noble-Able Stiffened-Gas Equation Of State.
extern double average_temperature (Point point, double p);
extern double thermal_expansion (Point point);
Phase-averaged thermal conductivity
By default the arithmetic average of the two phase conductivities is used to compute the face-centered thermal conductivity.
const face vector kappa0[] = {0,0,0};
(const) face vector kappa = kappa0;
#ifndef kappa
#define kappa(f) (clamp(f,0.,1.)*(kappa1 - kappa2) + kappa2)
#endif
If the thermal conductivities are not-zero, we need to allocate a new field.
Coupled Poisson-Helmholtz equations for temperature and pressure
The robustness of the solver relies on solving equations (8) and (10) in a strongly-coupled manner with the multigrid solver. After temporal discretisation this leads to the following coupled Poisson–Helmholtz system for the temperature T^{n+1} and pressure p^{n+1} (see eqs. 25 and 26 in Saade et al, 2023) \displaystyle \nabla\cdot\left(\kappa\nabla T^{n+1}\right) + \lambda_1 T^{n+1} + \lambda_2 p^{n+1} = \lambda_T \displaystyle \nabla\cdot\left(\alpha\nabla p^{n+1}\right) + \lambda p^{n+1} + \lambda_4\nabla\cdot\left(\kappa\nabla T^{n+1}\right) = \lambda_p We allocate fields to store the provisionary temperature T^n and the coefficients.
scalar Ts[], lambda1[], lambda2[], lambda4[];
We then define the corresponding relaxation and residual functions which will be used by the multigrid solver.
#include "poisson.h"
struct Thermal {
(const) face vector alpha;
(const) scalar lambda;
double tolerance;
int nrelax, minlevel;
scalar * res;
};
static void relax_thermal (scalar * al, scalar * bl, int l, void * data)
{
scalar T = al[0], p = al[1], rhsT = bl[0], rhsp = bl[1];
struct Thermal * tp = (struct Thermal *) data;
(const) face vector alpha = tp->alpha;
(const) scalar lambda = tp->lambda;
#if JACOBI
scalar cT[], cp[];
#else
scalar cT = T, cp = p;
#endif
foreach_level_or_leaf (l) {
double numT = sq(Delta)*(lambda2[]*p[] - rhsT[]), denT = - lambda1[]*sq(Delta);
double nump = - sq(Delta)*rhsp[], denp = - lambda[]*sq(Delta);
foreach_dimension() {
numT += kappa.x[1]*T[1] + kappa.x[]*T[-1];
denT += kappa.x[1] + kappa.x[];
nump += alpha.x[1]*p[1] + alpha.x[]*p[-1];
nump += lambda4[]*(kappa.x[1]*(T[1] - T[]) - kappa.x[]*(T[] - T[-1]));
denp += alpha.x[1] + alpha.x[];
}
cT[] = numT/denT;
cp[] = nump/denp;
}
#if JACOBI
foreach_level_or_leaf (l) {
T[] = (T[] + 2.*cT[])/3.;
p[] = (p[] + 2.*cp[])/3.;
}
#endif
}
static double residual_thermal (scalar * al, scalar * bl, scalar * resl, void * data)
{
scalar T = al[0], p = al[1], rhsT = bl[0], rhsp = bl[1], resT = resl[0], resp = resl[1];
struct Thermal * tp = (struct Thermal *) data;
(const) face vector alpha = tp->alpha;
(const) scalar lambda = tp->lambda;
double maxres = 0.;
#if TREE
/* conservative coarse/fine discretisation (2nd order) */
face vector gradT[], gradp[];
foreach_face() {
gradT.x[] = kappa.x[]*face_gradient_x (T, 0);
gradp.x[] = alpha.x[]*face_gradient_x (p, 0);
}
foreach (reduction(max:maxres)) {
resT[] = rhsT[] - lambda1[]*T[] - lambda2[]*p[];
resp[] = rhsp[] - lambda[]*p[];
foreach_dimension() {
resT[] -= (gradT.x[1] - gradT.x[])/Delta;
resp[] -= (gradp.x[1] - gradp.x[])/Delta;
resp[] -= lambda4[]*(gradT.x[1] - gradT.x[])/Delta;
}
#else // !TREE
/* "naive" discretisation (only 1st order on trees) */
foreach (reduction(max:maxres)) {
resT[] = rhsT[] - lambda1[]*T[] - lambda2[]*p[];
resp[] = rhsp[] - lambda[]*p[];
foreach_dimension() {
resT[] += (kappa.x[0]*face_gradient_x (T, 0) -
kappa.x[1]*face_gradient_x (T, 1))/Delta;
resp[] += (alpha.x[0]*face_gradient_x (p, 0) -
alpha.x[1]*face_gradient_x (p, 1))/Delta;
resp[] += lambda4[]*(kappa.x[0]*face_gradient_x (T, 0) -
kappa.x[1]*face_gradient_x (T, 1))/Delta;
}
#endif // !TREE
double maxr = max(fabs(resT[]), fabs(resp[]));
if (maxr > maxres)
maxres = maxr;
}
return maxres;
}
This is the interface for the coupled solver.
mgstats poisson_thermal (scalar p, scalar rhs,
(const) face vector alpha,
(const) scalar lambda,
double tolerance = 0.,
int nrelax = 4,
int minlevel = 0,
scalar * res = NULL)
{
double defaultol = TOLERANCE;
if (tolerance)
TOLERANCE = tolerance;
restriction ({kappa, alpha, lambda1, lambda2, lambda, lambda4});
struct Thermal tp = { alpha, lambda, tolerance, nrelax, minlevel, res };
mgstats s = mg_solve ({T,p}, {Ts,rhs}, residual_thermal, relax_thermal,
&tp, nrelax, res, minlevel = max(1, minlevel));
if (tolerance)
TOLERANCE = defaultol;
return s;
}
Finally, we overload the poisson() function called by two-phase.h with our new function.
#define poisson(...) poisson_thermal(__VA_ARGS__)
#include "compressible/two-phase.h"
#undef poisson
Computation of the provisional temperature and Poisson–Helmholtz parameters
This is done before the projection, which will call the coupled Poisson–Helmholtz solver.
We compute \lambda_1, \lambda_2, \lambda_4 and r.h.s. for the temperature which will be used by the coupled Poisson–Helmholtz solver. The \lambda parameter and r.h.s. for the pressure are computed by the two-phase compressible solver.
double rhocp = cp1*frho1[] + cp2*frho2[];
lambda1[] = - cm[]*rhocp/dt;
double beta = thermal_expansion (point);
lambda2[] = cm[]*beta*Ts[]/dt;
lambda4[] = beta/rhocp/dt;
scalar rhsT = Ts;
rhsT[] = lambda1[]*Ts[] + lambda2[]*ps[];
}
We also compute the face-averaged thermal conductivity.
if (kappa1 || kappa2)
foreach_face() {
double ff = (f[] + f[-1])/2.;
kappa.x[] = fm.x[]*kappa(ff);
}
}
Heat flux contribution to the total energy
This adds the -\nabla\cdot\mathbf{q}_i term of the energy equation.
event end_timestep (i++)
{
if (kappa1 || kappa2) {
face vector gradTv = kappa;
foreach_face()
gradTv.x[] = kappa.x[]*face_gradient_x (T,0);
foreach () {
double energy = 0.;
foreach_dimension()
energy += gradTv.x[1] - gradTv.x[];
energy *= dt/(Delta*cm[]);
double fc = clamp(f[],0,1);
fE1[] += energy*fc;
fE2[] += energy*(1. - fc);
}
}
}
References
[saade2023] |
Youssef Saade, Detlef Lohse, and Daniel Fuster. A multigrid solver for the coupled pressure-temperature equations in an all-Mach solver with VoF. Journal of Computational Physics, 476:111865, 2023. [ DOI | http | .pdf ] |