1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
| #include "grid/quadtree.h"
#include "axi.h"
#include "src/compressible-thermal.h"
#include "src/compressible-tension.h"
#define LEVEL 14
double rhoL = 1., rhoR = 4.972194208811462e-5;
double p0L = 1. + 1./19.;
double p0 = 1./19.;
double tend = 1.5;
double Rbub = 1.;
double lambda = 64.;
double tr;
double pdim = 101325.*19./20.;
double rhodim = 998.21;
double Tdim = 293.15;
double Rdim = 1e-4;
face vector cs[];
scalar centroid_x[], centroid_y[], frac_area[];
scalar pdump[];
uf.t[left] = dirichlet(0.);
uf.n[left] = dirichlet(0.);
q.n[left] = dirichlet(0.);
q.t[left] = dirichlet(0.);
uf.n[top] = neumann(0.);
q.n[top] = neumann(0.);
uf.n[right] = neumann(0.);
q.n[right] = neumann(0.);
uf.n[bottom] = 0.;
uf.t[bottom] = dirichlet(0.);
double CFLac = 5.;
double dtmin = HUGE;
event stability (i++) {
foreach() {
double cl = f[] ? sqrt(gamma1*(PI1 + p[])/rhoL/(1. - rhoL*b1)) : 0.;
double cg = (1. - f[]) ? sqrt(gamma2*p[]/rhoR) : 0.;
double cs = fmax(cl,cg);
dtmin = min(Delta*CFLac/cs, dtmin);
}
DT = dtmin;
dtmax = dtmin;
}
int main() {
L0 = lambda;
X0 = -4.*Rbub;
tr = 0.915;
tend *= tr;
double Weber = 1000.;
f.sigma = 1./Weber;
f.gradient = zero;
gamma1 = 1.187;
PI1 = 7028e5/pdim;
b1 = 6.61e-4*rhodim;
qq1 = -1177788*rhodim/pdim;
cv1 = 3610*rhodim*Tdim/pdim; cv2 = 719.18*rhodim*Tdim/pdim;
cp1 = 4285*rhodim*Tdim/pdim; cp2 = 1006.85*rhodim*Tdim/pdim;
kappaT1 = 0.59846028987077/(Rdim/Tdim*sqrt(cube(pdim)/rhodim));
kappaT2 = 25.685e-3/(Rdim/Tdim*sqrt(cube(pdim)/rhodim));
init_grid(1 << 5);
TOLERANCE = 1e-6;
run();
}
event init (t = 0) {
if (!restore (file = "restart")) {
int maxlevel = LEVEL;
refine ( level <= (maxlevel - sqrt(sq(x) + sq(y))/4./Rbub));
fraction (f, - (sq(Rbub) - sq(x) - sq(y)));
foreach() {
frho1[] = f[]*rhoL;
frho2[] = (1. - f[])*rhoR;
double pL = p0L*(1. - Rbub/sqrt(sq(x) + sq(y))) + (p0 - 2.*f.sigma)*Rbub/sqrt(sq(x) + sq(y));
p[] = pL*f[] + p0*(1. - f[]);
double fc = clamp (f[],0.,1.);
double rhocpmcvavg = (cp1 - cv1)*frho1[] + (cp2 - cv2)*frho2[];
double const1 = (fc - frho1[]*b1) + (1. - fc - frho2[]*b2);
double const2 = (fc - frho1[]*b1)*PI1 + (1. - fc - frho2[]*b2)*PI2;
T[] = (const1*p[] + const2)/rhocpmcvavg;
fE1[] = (pL + gamma1*PI1)/(gamma1 - 1.)*(f[] - frho1[]*b1) + frho1[]*qq1;
fE2[] = (1. - f[])*(p0/(gamma2 - 1.));
q.x[] = 0.;
q.y[] = 0.;
}
boundary ((scalar *){q,frho1,frho2,p,fE1,fE2});
}
}
event centroid (t += 0.0001*0.915) {
scalar ff[];
foreach() {
ff[] = 1. - f[];
double xc = x, yc = y;
if (ff[] > 0. && ff[] < 1.) {
coord n = facet_normal (point, ff, cs), p;
double alpha = plane_alpha (ff[], n);
line_center (n, alpha, ff[], &p);
xc += p.x*Delta, yc += p.y*Delta;
}
centroid_x[] = xc; centroid_y[] = yc;
frac_area[] = ff[]*Delta*Delta;
double Ek = 0.;
foreach_dimension()
Ek += sq(q.x[]);
double fc = clamp (f[],0.,1.);
double invgammaavg = (fc - frho1[]*b1)/(gamma1 - 1.) +
(1. - fc - frho2[]*b2)/(gamma2 - 1.);
double PIGAMMAavg = PI1*gamma1*(fc - frho1[]*b1)/(gamma1 - 1.) + frho1[]*qq1 +
PI2*gamma2*(1. - fc - frho2[]*b2)/(gamma2 - 1.) + frho2[]*qq2;
pdump[] = (fE1[] + fE2[] - Ek/(frho1[] + frho2[])/2. - PIGAMMAavg)/invgammaavg;
}
double Volume = 0., area = 0., pressure = 0.;
foreach(reduction(+:area) reduction(+:Volume) reduction(+:pressure)) {
area += frac_area[];
Volume += 2*M_PI*centroid_y[]*frac_area[];
pressure += pdump[]*frac_area[];
}
if (pid() == 0) {
FILE * fp = fopen("volume.txt","a");
char str[80];
sprintf(str,"%g %g %g\n",t/tr,Volume,pressure/area);
fputs(str,fp);
fclose(fp);
}
}
event logfile (t += 0.01*0.915) {
stats sp = statsf (p);
stats su = statsf (q.x);
stats sT = statsf (T);
fprintf (stderr,"t = %g, i = %d, dt = %g, min(p) = %g, max(p) = %g, min(T) = %g, max(T) = %g, min(u) = %g, max(u) = %g\n", t/tr, i, dt/tr, sp.min, sp.max, sT.min, sT.max, su.min, su.max);
}
event output (t += 0.01*0.915) {
char name[80];
sprintf (name,"dump-%g",t/0.915);
dump (name, list = (scalar *){f,pdump,T});
}
event ending (t = tend) {
return 1.;
}
|