sandbox/yixian/Sandglass3D.c

    Flow in a Sandglass / Hourglass with an orifice at the bottom in 3D case

    We propose an implementation of the Jop Pouliquen Forterre µ(I) rheology for the flow in a hourglass.

    Code

    Includes and definitions

    // #include "grid/multigrid.h"
    #include "grid/octree.h"
    #include "navier-stokes/centered.h"
    #include "vof.h"
    // Domain extent
    #define LDOMAIN 1.
    // heap definition
    double  H0,R0,D,W,tmax,Q,Wmin,DW;
    //film size
    double  Lz;

    passive fluid small density to preserve 0 pressure and small viscocity

    #define RHOF 1e-4
    #define mug  1e-5
    // Maximum refinement
    #define LEVEL 5 //7
    char s[80];
    FILE * fpf,*fwq;
    scalar f[];
    scalar * interfaces = {f}; 
    face vector alphav[];
    face vector muv[];
    scalar rhov[];

    Boundary conditions for granular flow, pressure must be zero at the surface. The pressure is zero in the hole x=1 and 4\deltax < y< W+4\deltax, but the lithostatic gradient is given elswhere on the right wall. No slip boundary conditions on the other walls.

    p[top] = dirichlet(0);
    u.n[top] = neumann(0);
    u.t[bottom] =  (x-LDOMAIN/2)*(x-LDOMAIN/2)+ (z-LDOMAIN/2)*(z-LDOMAIN/2) <= W/2.*W/2. ? neumann(0):  dirichlet(0);
    u.n[bottom] =  (x-LDOMAIN/2)*(x-LDOMAIN/2)+ (z-LDOMAIN/2)*(z-LDOMAIN/2) <= W/2.*W/2. ? neumann(0):  dirichlet(0);
    //u.n[bottom] = dirichlet(0);
    p[bottom]   =  (x-LDOMAIN/2)*(x-LDOMAIN/2)+ (z-LDOMAIN/2)*(z-LDOMAIN/2) <= W/2.*W/2. ? dirichlet(0): neumann(0); 
    u.n[right] = dirichlet(0);
    u.n[left] = dirichlet(0);
    u.t[right] = dirichlet(0);
    u.t[left] = dirichlet(0);
    u.n[front] = dirichlet(0);
    u.t[front] = dirichlet(0);
    u.n[back] = dirichlet(0);
    u.t[back] = dirichlet(0);
    f[left]= neumann(0);

    the three cases in the main

    int main(int argc, char ** argv) {
      L0 = LDOMAIN;
      // number of grid points
      N = 1 << LEVEL;
      // maximum timestep
      DT = 0.001;
     
      TOLERANCE = 1e-3; 
      // Initial conditions a=.5
      H0=0.96;
      R0=20.000;
      // Grain size
      D=1./90.;
      // size of the hole
      W = 0.25;
      //Wmin = 0.15625;
      DW = LDOMAIN/N;
      fwq = fopen ("outWQ", "w");
      fclose(fwq);
      Lz = LDOMAIN;
      const face vector g[] = {0.,-1.,0};
      a = g;
      alpha = alphav;
      mu = muv;
      rho = rhov;
    
      
      Q = 0; 
      tmax = 3;
      fpf = fopen ("interface.txt", "w");
      run();
      fclose (fpf);
      fprintf (stdout,"\n");
      fwq = fopen ("outWQ", "a");
      fprintf(fwq," %lf %lf \n", W, Q);
      fclose (fwq);
      
    }

    initial heap, a paralepipede

    // note the v
    event init (t = 0) {
     // mask (x < 3.*L0/4. ? left : none);
      
      scalar phi[];
      foreach_vertex()
        phi[] = min(H0 - y, R0 - x);
      fractions (phi, f);

    lithostatic pressure, with a zero pressure near the hole to help

      foreach()
        p[] = ((x-LDOMAIN/2)*(x-LDOMAIN/2)+ (z-LDOMAIN/2)*(z-LDOMAIN/2) <= W/2.*W/2. && fabs(y)<= .1) ?  0 : max(H0 - y,0) ;
      boundary ({p});
    }

    total density

    #define rho(f) ((f) + RHOF*(1. - (f)))

    Viscosity computing D_2=D_{ij}D_{ji};

    In the pure shear flow D_{11}=D_{22}=0 et D_{12}=D_{21}=(1/2)(\partial u/\partial y), so that
    D_2=\sqrt{D_{ij}D_{ij}} =\sqrt{ 2 D_{12}^2} = \frac{\partial u}{ \sqrt{2}\partial y}. In a pure shear flow, \partial u/\partial y= \sqrt{2} D_2. The inertial number I is D \sqrt{2} D_2/\sqrt(p) and \mu = \mu_s+ \frac{\Delta \mu}{1+I/I_0} the viscosity is \eta = \mu(I)p/D_2:

    note that if \eta is too small an artificial small viscosity \rho D \sqrt{gD} is taken see Lagrée et al. 11 § 2.3.1

    event properties (i++) {
      trash ({alphav});
      scalar eta[];

    foreach_dimension() { double dxx = u.x[1,0] - u.x[-1,0]; double dxy = (u.x[0,1] - u.x[0,-1] + u.y[1,0] - u.y[-1,0])/2.; D2 += sq(dxx) + sq(dxy); }

      foreach() {
        eta[] = mug;
        if (p[] > 0.) {
          double D2 = 0.;
          double dxx = u.x[1,0,0] - u.x[-1,0,0];
          double dyy =  u.y[0,1,0] - u.y[0,-1,0];
          double dzz =  u.z[0,0,1] - u.z[0,0,-1];
          double dxy = (u.x[0,1,0] - u.x[0,-1,0] + u.y[1,0,0] - u.y[-1,0,0])/2.;
          double dxz = (u.x[0,0,1] - u.x[0,0,-1] + u.z[1,0,0] - u.z[-1,0,0])/2.;
          double dyz = (u.y[0,0,1] - u.y[0,0,-1] + u.z[0,1,0] - u.z[0,-1,0])/2.;
          D2 = sq(dxx) + sq(dyy) +sq(dzz) +2.*sq(dxy) +2.*sq(dxz) +2.*sq(dyz);
          if (D2 > 0.) {
    	D2 = sqrt(2.*D2)/(2.*Delta);
    	double In = D2*D/sqrt(p[]);
    	double muI = .32 + .28*In/(.4 + In);
    	double etamin = sqrt(D*D*D);
    	eta[] = max((muI*p[])/D2, etamin);
    	eta[] = min(eta[],100);
          }
        }
      }
      boundary ({eta});
      scalar fa[];
      foreach()
        fa[] = (8.*f[] + 
    	    4.*(f[-1,0,0] + f[1,0,0] + f[0,-1,0] + f[0,1,0]+ f[0,0,1]+ f[0,0,-1]) +
    	        2*(f[1,1,0] + f[-1,1,0] + f[1,-1,0] + f[-1,-1,0]+f[0,1,1] + f[0,-1,1] +
                       f[0,1,-1] + f[0,-1,-1]+f[1,0,1] + f[-1,0,1] + f[1,0,-1] + f[-1,0,-1])+ 
              f[1,1,1]+ f[1,1,-1]+f[-1,1,-1]+f[-1,1,1]+f[1,-1,1]+ f[1,-1,-1]+f[-1,-1,-1]+f[-1,-1,1])/64.;
      boundary ({fa});
      foreach_face() {
        double fm = (fa[] + fa[-1])/2.;
        muv.x[] = (fm*(eta[] + eta[-1])/2. + (1. - fm)*mug);
        // mu.x[] = 1./(2.*fm/(eta[] + eta[-1,0]) + (1. - fm)/mug);
        alphav.x[] = 1./rho(fm);
      }
       foreach()
        rhov[] = rho(fa[]); 
        boundary ({muv,alphav,rhov});
    
      //boundary ((scalar *){muv,alphav});
    }

    convergence outputs

    void mg_print (mgstats mg)
    {
      if (mg.i > 0 && mg.resa > 0.)
        fprintf (stderr, "#   %d %g %g %g\n", mg.i, mg.resb, mg.resa,  
    	     exp (log (mg.resb/mg.resa)/mg.i));  
    }

    convergence stats

    event logfile (i += 1) {
      stats s = statsf (f);
      fprintf (stderr, "%g %d %g %g %g %g\n", t, i, dt, s.sum, s.min, s.max - 1.);
      mg_print (mgp);
      mg_print (mgpf);
      mg_print (mgu);
      fflush (stderr);
    }

    Rate of flowing materials across the hole

    event debit (t = 0 ;t += 0.1 ; t<= tmax  ) {
      static double V=1; 
      V=0;
      foreach()
        V = V + f[]* Delta * Delta* Delta; 
      if(t>=0.) fprintf (stdout,"%lf %lf \n",t,V);
      fflush (stdout);
    }

    film output for 2D

    #if 0
    event movie (t += 0.05) {
      static FILE * fp1 = popen ("ppm2mpeg > level.mpg", "w");
      scalar l[];
      foreach()
        l[] = level;
      output_ppm (l, fp1, min = 0, max = LEVEL, 
    	      n = 256, box = {{0,0},{Lz,Lz}});
    
      foreach()
        l[] = f[]*(1+sqrt(sq(u.x[]) + sq(u.y[])));
      boundary ({l});
      static FILE * fp2 = popen ("ppm2mpeg > velo.mpg", "w");
      output_ppm (l, fp2, min = 0, max = 2., linear = true, 
    	      n = 256, box = {{0,0},{Lz,Lz}});
    
      static FILE * fp3 = popen ("ppm2mpeg > f.mpg", "w");
      foreach()
        l[] = f[]*p[];
      output_ppm (l, fp3, min = 0, linear = true,
    	      n = 256, box = {{0,0},{Lz,Lz}});
    }
    event pictures (t==3) {
      output_ppm (f, file = "f.png", min=0, max = 2,  spread = 2, n = 256, linear = true,
    	      box = {{0,0},{2,2}});
    }
    #endif

    gfsview…

    #if 0
    event gfsview (i += 1) {
      static FILE * fp = popen (dimension == 2 ?
    			    "gfsview2D gfsview.gfv" :
    			    "gfsview3D gfsview3D.gfv",
    			    "w");
      output_gfs (fp, t = t);
    }
    #endif

    if “grid/multigrid.h” is not included, then this is the quadtree with possibility of adaptation

    #if 0 // QUADTREE
    event adapt (i++) {
    adapt_wavelet ({f,u.x,u.y}, (double[]){5e-3,0.001,0.001}, LEVEL, LEVEL-2,
    	       list = {p,u,pf,uf,g,f});
    }
    #endif

    # Run

    to run

       qcc -g -O2 -Wall -o Sandglass3D Sandglass3D.c -lm
       ./Sandglass3D > out

    Result

    We plot the volume as function of time. it is linear after a transition, this is Beverloo law:
    p'out' w l
    V(t) (script)

    V(t) (script)

    Bibliography

    • L. Staron, P.-Y. Lagrée, & S. Popinet (2014) “Continuum simulation of the discharge of the granular silo, A validation test for the μ(I) visco-plastic flow law” Eur. Phys. J. E (2014) 37: 5 DOI 10.1140/epje/i2014-14005-6

    • L. Staron, P.-Y. Lagrée & S. Popinet (2012) “The granular silo as a continuum plastic flow: the hour-glass vs the clepsydra” Phys. Fluids 24, 103301 (2012); doi: 10.1063/1.4757390

    • Y. Zhou PhD