sandbox/pressure_pool.c
Spatially Varying Pressure
Example of a constant spatially varying pressure over a square constant depth water body
A pressure field of Pa(x,y)-P_{ref}=Amp*sin(2*\pi*x/L)*cos(2*\pi*y/L) is applied to a square pool
If grid/cartesian1D.h is specified we are working only in 1D #include “grid/cartesian1D.h”
#include "saint-venant_ss.h"
#define MAXLEVEL 8
#define MINLEVEL 4
#define ETAE 1e-8
Inverse barometer conversion hPa to metres \eta = - \frac{\Delta p}{\rho_w g} Thus for pressure in hectoPascals the coefficient is \frac{100}{\rho_w g}.
double rho_inv = 1./1025.;
double amp = 200.;
double compare (scalar v, scalar vn)
{
double maxC = 0.;
foreach(reduction(maxC:max)) {
double dv = fabs (v[] - vn[]);
if (dv > maxC)
= dv;
maxC }
return maxC;
}
Here we can set standard parameters in Basilisk
int main()
{
#if QUADTREE
// 32^2 grid points to start with
( 1 << MINLEVEL );
init_grid#else // Cartesian
// 1024^2 grid points
( 1 << MAXLEVEL );
init_grid#endif
Here we setup the domain geometry. For the moment Basilisk only
supports square domains. This case uses metres east and north. We set
the size of the box L0
and the coordinates of the
lower-left corner (X0,Y0)
. In this case we are assuming a
square ‘pool’ of length 1000 m.
// the domain is
(1000.);
size (-L0/2.,-L0/2.); origin
G
is the acceleration of gravity required by the
Saint-Venant solver. This is the only dimensional parameter..
= 9.81;
G run();
}
Boundary conditions
We set the normal velocity component on the left, right bottom and top boundaries to a “radiation condition” with a reference sealevel of inverse barometer. Note that the sign is important and needs to reflect the orientation of the boundary.
.x[left] = - radiation(-Pa2m*(pa[]));
u.x[right] = + radiation(-Pa2m*(pa[]));
u.y[bottom] = - radiation(-Pa2m*(pa[]));
u.y[top] = + radiation(-Pa2m*(pa[])); u
Adaptation
Here we define an auxilliary function which we will use several times
in what follows. Again we have two #if...#else
branches
selecting whether the simulation is being run on an (adaptive) quadtree
or a (static) Cartesian grid.
We want to adapt according to two criteria: an estimate of the error
on the free surface position – to track the wave in time – and an
estimate of the error on the maximum wave height hmax
– to
make sure that the final maximum wave height field is properly
resolved.
We first define a temporary field (in the automatic
variable ?
) which we set to h+z_b but only for “wet” cells. If we used
h+z_b everywhere (i.e. the default
\eta provided by the Saint-Venant
solver) we would also refine the dry topography, which is not
useful.
int adapt() {
#if QUADTREE
scalar eta[];
foreach()
[] = h[] > dry ? h[] + zb[] : 0;
etaboundary ({eta});
h+z_b everywhere (i.e. the default \eta provided by the Saint-Venant solver) we would also refine the dry topography, which is not useful.
We can now use wavelet adaptation on the list of scalars
{?,hmax}
with thresholds {ETAE,HMAXE}
. The
compiler is not clever enough yet and needs to be told explicitly that
this is a list of double
s, hence the
(double[])
type casting
.
The function then returns the number of cells refined.
astats s = adapt_wavelet ({eta}, (double[]){ETAE},
, MAXLEVEL);
MINLEVELfprintf (stderr, "# refined %d cells, coarsened %d cells\n", s.nf, s.nc);
return s.nf;
#else // Cartesian
return 0;
#endif
}
event initiate(i=0)
{
The initial still water surface is at z=0 so that the water depth h is…
double ramp = t < 120. ? t/120. : 1.;
foreach() {
[] = -2;
zb[] = max(0., - zb[]);
h[] = ramp*amp*sin(2.*pi*x/L0)*cos(2.*pi*y/L0);
pa}
boundary ({h,zb});
}
We want the simulation to stop when we are close to steady state. To
do this we store the h
field of the previous timestep in an
auxilliary variable hn
.
Every 10 timesteps we check whether u has changed by more than 10-8. If it has not, the event returns 1 which stops the simulation. We also output running statistics to the standard error.
event logfile (i+= 10; i <= 10000) {
double dh = change (h, hn);
if ( (i > 100 && dh < 1e-8 ) || i==10000) {
double dhref = compare (eta,etaref);
fprintf (stderr, "# Max difference is %.9g\n# Time to convergence %g",
,t);
dhrefFILE * fp = fopen("diff", "w");
fprintf(fp,"# 1:x 2:y 3:h 4:zb 5:eta 6:etaref 7:diff\n");
for (double x = -500; x <= 500; x += 10) {
for (double y = -500; y <= 500; y += 10)
fprintf (fp, "%g %g %.9g %.9g %.9g %.9g %.9g\n", x, y,
interpolate (h, x, y),
interpolate (zb, x, y),
interpolate (eta, x, y),
interpolate (etaref, x, y),
interpolate (etaref, x, y) - interpolate (eta, x, y));
fprintf( fp, "\n");
}
fclose (fp);
return 1; /* stop */
}
stats s = statsf (h);
norm n = normf (u.x);
double detaref = compare (eta,etaref);
if (i == 0)
fprintf (stderr, "t i h.min h.max h.sum u.x.rms u.x.max dh detaref dt\n");
fprintf (stderr, "%g %d %g %g %g %g %g %g %g %g\n", t, i, s.min, s.max,
.sum, n.rms, n.max, dh, detaref, dt);
s}
We also use a simple implicit scheme to implement quadratic bottom friction i.e. \frac{d\mathbf{u}}{dt} = - C_f|\mathbf{u}|\frac{\mathbf{u}}{h} with C_f=10^{-4}. We ramp up the pressure from zero
event source (i++) {
double ramp = t < 120. ? t/120. : 1.;
foreach() {
[] = ramp*amp*sin(2.*pi*x/L0)*cos(2.*pi*y/L0);
pa[] = -Pa2m*pa[];
etaref[] = h[] > dry ? h[] + zb[] : 0.;
eta}
foreach() {
double a_inv = h[] < dry ? 0. : h[]/(h[] + 1e-4*dt*norm(u));
//double a = h[] < dry ? HUGE : 1. + 1e-2*dt*norm(u)/h[];
foreach_dimension()
.x[] = u.x[]*a_inv;
u}
boundary ({h,u,zb,pa,etaref});
}
Every 5 minutes, the h, z_b and hmax
fields are
interpolated bilinearly onto a n x n
regular grid and
written on standard output.
event snapshots (t += 300) {
printf ("# file: t-%g\n", t);
output_field ({eta}, stdout, n = 1 << MAXLEVEL, linear = true);
scalar l[];
foreach()
[]=level;
lprintf ("# file: level-%g\n", t);
output_field ({l});
}
event movies (t+=60) {
static FILE * fp = NULL;
if (!fp) fp = popen ("ppm2mpeg > eta.mpg", "w");
scalar m[], etam[];
foreach() {
[] = eta[]*(h[] > dry);
etam[] = etam[] - zb[];
m}
boundary ({m, etam});
output_ppm (etam, fp, min = -0.002, max = 0.002 , n = 512, linear = true);
// output_ppm (etam, fp, n = 512, linear = true);
#if QUADTREE
static FILE * fp1 = NULL;
if (!fp1) fp1 = popen ("ppm2mpeg > level.mpg", "w");
scalar l = etam;
foreach()
[] = level;
loutput_ppm (l, fp1, min = MINLEVEL, max = MAXLEVEL, n = 512);
#endif
}
Adaptivity
We apply our adapt()
function at every timestep.
Results
After running and processing by gnuplot (using pressure_pool.plot) we get the following pictures and animations.

