sandbox/lopez/src/dissipation.h

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79
    80
    81
    82
    83
    84
    85
    86
    87
    88
    89
    90
    91
    92
    93
    94
    95
    96
    97
    98
    99
    100
    101
    102
    103
    104
    105
    106
    107
    108
    109
    110
    111
    112
    113
    114
    115
    116
    117
    118
    119
    120
    121
    122
    123
    124
    125
    126
    127
    128
    129
    130
    131
    132
    133
    134
    135
    136
    137
    138
    139
    140
    141
    142
    143
    144
    145
    146
    147
    148
    149
    150
    151
    152
    153
    154
    155
    156
    157
    158
    159
    160
    
    
    struct Dissipation {
      scalar dis;
      vector u;
      face vector mu;
    #if COMPRESSIBLE
      face vector lambdav;
    #endif
    };
    
    #if AXI
    # define gamma (1./y)
    #else
    # define gamma (1.)
    #endif
    
    void dissipation (struct Dissipation p)
    {
      vector u = p.u; 
      scalar dis = p.dis;
      (const) face vector mu = p.mu;
    
    #if COMPRESSIBLE
      (const) face vector lambdav = p.lambdav;
    #endif
    
    #if AXI
      scalar ur = u.y;
    #endif
    #if TREE
      /* conservative coarse/fine discretisation (2nd order) */
    
      foreach () {
    #if AXI
        dis[] = ((mu.x[] + mu.x[1] + mu.y[] + mu.y[0,1])/2.*gamma*sq(ur[]/y)
    #if COMPRESSIBLE
    	     + (lambdav.x[] + lambdav.x[1] +lambdav.y[]+lambdav.y[0,1])/4.*
    	     (ur[]/y + (u.x[1] -u.x[-1] + u.y[0,1] -u.y[0,-1])/2./Delta)*ur[]/y
    #endif
    	     );
    #else
        dis[] = 0.;
    #endif
      }
    
      foreach_dimension() {
        face vector taux[];
    #if COMPRESSIBLE
        face vector tauc[];
    #if AXI
        face vector axic[];
    #endif
    #endif
        foreach_face(x) {
    #if COMPRESSIBLE
    #if AXI
          axic.x[] = lambdav.x[]*(ur[]+ur[-1])
    	*(u.x[] - u.x[-1])/Delta/2.;
    #endif
          tauc.x[] = lambdav.x[]*(u.x[] - u.x[-1]
         #if dimension > 1
    			      + (u.y[0,1] + u.y[-1,1])/4
    			      - (u.y[0,-1] + u.y[-1,-1])/4.
        #endif
        #if dimension > 2
    			      + (u.z[0,0,1] + u.z[-1,0,1])/4
    			      - (u.z[0,0,-1] + u.z[-1,0,-1])/4.
        #endif
    			      )*(u.x[] - u.x[-1])/sq(Delta);
    #endif
          taux.x[] =  2.*mu.x[]*sq((u.x[] - u.x[-1])/Delta);
        }
        #if dimension > 1
          foreach_face(y)
    	taux.y[] = mu.y[]*(u.x[] - u.x[0,-1] +
    			   (u.y[1,-1] + u.y[1,0])/4. -
    			   (u.y[-1,-1] + u.y[-1,0])/4.)
    	*(u.x[] - u.x[0,-1])/sq(Delta);
        #endif
        #if dimension > 2
          foreach_face(z)
    	taux.z[] = mu.z[]*(u.x[] - u.x[0,0,-1] +
    			   (u.z[1,0,-1] + u.z[1,0,0])/4. -
    			   (u.z[-1,0,-1] + u.z[-1,0,0])/4.)
    	*(u.x[] - u.x[0,0,-1])/sq(Delta);
        #endif  
          foreach () {
            double d = 0;
    	foreach_dimension()
    	  d += (taux.x[1] + taux.x[])*gamma;
    	dis[] += (d
    #if COMPRESSIBLE 
                   + tauc.x[1] + tauc.x[]
    #if AXI
                   + (axic.x[1] + axic.x[])/y
    #endif
    #endif
    	       )/2.;
          }
      }
    #else
    /*   /\* "naive" discretisation (only 1st order on trees) *\/ */
      foreach () {
    #if AXI
        dis[] = ((mu.x[] + mu.x[1] + mu.y[] + mu.y[0,1])/2.*gamma*sq(ur[]/y)
    #if COMPRESSIBLE
    	     + (lambdav.x[] + lambdav.x[1] +lambdav.y[]+lambdav.y[0,1])/4.*
    	     (ur[]/y + (u.x[1] -u.x[-1] + u.y[0,1] -u.y[0,-1])/2./Delta)*ur[]/y
    #endif
    	     );
    #else
        dis[] = 0.;
    #endif
    
        foreach_dimension() 
    	     dis[] += ((mu.x[1,0]*sq(u.x[1] - u.x[])
    		+ mu.x[]*sq(u.x[] - u.x[-1])
          #if dimension > 1
    		+ mu.y[0,1]*(u.x[0,1] - u.x[] +
    		(u.y[1,0] + u.y[1,1])/4. -
    		(u.y[-1,0] + u.y[-1,1])/4.)*(u.x[0,1] - u.x[])/2.
    		+ mu.y[]*(u.x[] - u.x[0,-1] +
    		(u.y[1,-1] + u.y[1,0])/4. -
    		(u.y[-1,-1] + u.y[-1,0])/4.)*(u.x[] - u.x[0,-1])/2.
          #endif
          #if dimension > 2
    		+ mu.z[0,0,1]*(u.x[0,0,1] - u.x[] +
    			       (u.z[1,0,0] + u.z[1,0,1])/4. -
    			       (u.z[-1,0,0] + u.z[-1,0,1])/4.)*(u.x[0,0,1] - u.x[])/2.
    		- mu.z[]*(u.x[] - u.x[0,0,-1] +
    			  (u.z[1,0,-1] + u.z[1,0,0])/4. -
    			  (u.z[-1,0,-1] + u.z[-1,0,0])/4.)*(u.x[] - u.x[0,0,-1])/2.
           #endif
    		)*gamma
    #if COMPRESSIBLE
    	     + lambdav.x[1]*sq(u.x[1] - u.x[])/2.
    	     + lambdav.x[]*sq(u.x[] - u.x[-1])/2.
                   #if dimension > 1
    	     + lambdav.x[1]*((u.y[1,1] + u.y[0,1])/4 -
    	                     (u.y[1,-1] + u.y[0,-1])/4.)*(u.x[1] - u.x[])/2.
    	     + lambdav.x[]*((u.y[0,1] + u.y[-1,1])/4 -
    			    (u.y[0,-1] + u.y[-1,-1])/4.)*(u.x[] - u.x[-1])/2.
    #if AXI
    	     + lambdav.x[1]*(ur[1] + ur[])*(u.x[1] - u.x[])/4./y*Delta
    	     + lambdav.x[]*(ur[-1] + ur[])*(u.x[] - u.x[-1])/4./y*Delta
    #endif
                   #endif
                   #if dimension > 2
    		  + lambdav.x[1]*((u.z[1,0,1] + u.z[0,0,1])/4 -
    				  (u.z[1,0,-1] + u.z[0,0,-1])/4.)*(u.x[1] - u.x[])/2.
    		  + lambdav.x[]*((u.z[0,0,1] + u.z[-1,0,1])/4 -
    				    (u.z[0,0,-1] + u.z[-1,0,-1])/4.)*(u.x[] - u.x[-1])/2.
                  #endif
    #endif
    	     )/sq(Delta);
    }
    #endif
    }	     
    
    #undef gamma