sandbox/ghigo/src/myviscosity.h

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79
    80
    81
    82
    83
    84
    85
    86
    87
    88
    89
    90
    91
    92
    93
    94
    95
    96
    97
    98
    99
    100
    101
    102
    103
    104
    105
    106
    107
    108
    109
    110
    111
    112
    113
    114
    115
    116
    117
    118
    119
    120
    121
    122
    123
    124
    125
    126
    127
    128
    129
    130
    131
    132
    133
    134
    135
    136
    137
    138
    139
    140
    141
    142
    143
    144
    145
    146
    147
    148
    149
    150
    151
    152
    153
    154
    155
    156
    157
    158
    159
    160
    161
    162
    163
    164
    165
    166
    167
    168
    169
    170
    171
    172
    173
    174
    175
    176
    177
    178
    179
    180
    181
    182
    183
    184
    185
    186
    187
    188
    189
    190
    191
    192
    193
    194
    195
    196
    197
    198
    199
    200
    201
    202
    203
    204
    205
    206
    207
    208
    209
    210
    211
    212
    213
    214
    215
    216
    217
    218
    219
    220
    221
    222
    223
    
    #include "mypoisson.h"
    
    struct Viscosity {
      vector u;
      face vector mu;
      scalar rho;
      double dt;
      int nrelax;
      scalar * res;
    #if EMBED
      void (* embed_stress_flux) (Point, vector, vector, coord *, coord *);
    #endif // EMBED
    };
    
    #if AXI
    // fixme: RHO here not correct
    # define lambda ((coord){1., 1. + dt/RHO*(mu.x[] + mu.x[1] + \
    					  mu.y[] + mu.y[0,1])/2./sq(y)})
    #else // not AXI
    # if dimension == 1
    #   define lambda ((coord){1.})
    # elif dimension == 2
    #   define lambda ((coord){1.,1.})
    # elif dimension == 3
    #   define lambda ((coord){1.,1.,1.})
    #endif
    #endif
    
    // Temporary placement for tangential face gradients
    
    #ifndef EMBED
    #define face_avg_gradient_t1_x(a,i)				\
      ((a[1,i-1] + a[1,i] - a[-1,i-1] - a[-1,i])/(4.*Delta))
    #define face_avg_gradient_t2_x(a,i) \
      ((a[1,0,i-1] + a[1,0,i] - a[-1,0,i-1] - a[-1,0,i])/(4.*Delta))
    
    #define face_avg_gradient_t1_y(a,i) \
      ((a[i-1,1] + a[i,1] - a[i-1,-1] - a[i,-1])/(4.*Delta))
    #define face_avg_gradient_t2_y(a,i) \
      ((a[0,1,i-1] + a[0,1,i] - a[0,-1,i-1] - a[0,-1,i])/(4.*Delta))
    
    #define face_avg_gradient_t1_z(a,i) \
      ((a[i-1,0,1] + a[i,0,1] - a[i-1,0,-1] - a[i,0,-1])/(4.*Delta))
    #define face_avg_gradient_t2_z(a,i) \
      ((a[0,i-1,1] + a[0,i,1] - a[i-1,0,-1] - a[0,i,-1])/(4.*Delta))
    #endif // EMBED
    
    // Note how the relaxation function uses "naive" gradients i.e. not
    // the face_gradient_* macros.
    
    static void relax_viscosity (scalar * a, scalar * b, int l, void * data)
    {
      struct Viscosity * p = (struct Viscosity *) data;
      (const) face vector mu = p->mu;
      (const) scalar rho = p->rho;
      double dt = p->dt;
      vector u = vector(a[0]), r = vector(b[0]);
    
    #if EMBED
      void (* embed_stress_flux) (Point, vector, vector,
    			      coord *, coord *) = p->embed_stress_flux;
    #endif // EMBED
    
    #if JACOBI
      vector w[];
    #else
      vector w = u;
    #endif
    
      foreach_level_or_leaf (l) {
        coord c = {0., 0., 0.}, d = {0., 0., 0.};
    #if EMBED
        if (embed_stress_flux)
          embed_stress_flux (point, u, mu, &c, &d);
    #endif // EMBED
        foreach_dimension() {
          w.x[] = (dt*(2.*mu.x[1]*u.x[1] + 2.*mu.x[]*u.x[-1]
                   #if dimension > 1
    		   + mu.y[0,1]*(u.x[0,1] +
    				face_avg_gradient_t1_x (u.y, 1)*Delta)
    		   - mu.y[]*(- u.x[0,-1] +
    			     face_avg_gradient_t1_x (u.y, 0)*Delta)
                   #endif
    	       #if dimension > 2
    		   + mu.z[0,0,1]*(u.x[0,0,1] +
    				  face_avg_gradient_t2_x (u.z, 1)*Delta)
    		   - mu.z[]*(- u.x[0,0,-1] +
    			     face_avg_gradient_t2_x (u.z, 0)*Delta)
                   #endif
    		   ) + (r.x[] - dt*c.x)*sq(Delta))/
    	(sq(Delta)*(rho[]*lambda.x + dt*d.x) + dt*(2.*mu.x[1] + 2.*mu.x[]
                                        #if dimension > 1
    						   + mu.y[0,1] + mu.y[]
                                        #endif
    			            #if dimension > 2
    						   + mu.z[0,0,1] + mu.z[]
    			            #endif
    						   ) + SEPS);
        }
      }
    
    #if JACOBI
      foreach_level_or_leaf (l)
        foreach_dimension()
          u.x[] = (u.x[] + 2.*w.x[])/3.;
    #endif
    
    #if TRASH
      vector u1[];
      foreach_level_or_leaf (l)
        foreach_dimension()
          u1.x[] = u.x[];
      trash ({u});
      foreach_level_or_leaf (l)
        foreach_dimension()
          u.x[] = u1.x[];
    #endif
    }
    
    static double residual_viscosity (scalar * a, scalar * b, scalar * resl, 
    				  void * data)
    {
      struct Viscosity * p = (struct Viscosity *) data;
      (const) face vector mu = p->mu;
      (const) scalar rho = p->rho;
      double dt = p->dt;
      vector u = vector(a[0]), r = vector(b[0]), res = vector(resl[0]);
      double maxres = 0.;
    
    #if EMBED
      void (* embed_stress_flux) (Point, vector, vector, coord *, coord *) = p->embed_stress_flux;
    #endif
    
    #if TREE
      /* conservative coarse/fine discretisation (2nd order) */
      foreach_dimension() {
        face vector taux[];
        foreach_face(x)
          taux.x[] = 2.*mu.x[]*face_gradient_x (u.x, 0);
        #if dimension > 1
          foreach_face(y)
    	taux.y[] = mu.y[]*(face_gradient_y (u.x, 0) + 
    			   face_avg_gradient_t1_x (u.y, 0));
        #endif
        #if dimension > 2
          foreach_face(z)
    	taux.z[] = mu.z[]*(face_gradient_z (u.x, 0) + 
    			   face_avg_gradient_t2_x (u.z, 0));
        #endif
        boundary_flux ({taux});
        foreach (reduction(max:maxres)) {
          double a = 0.;
          coord c = {0., 0., 0.}, d = {0., 0., 0.};
    #if EMBED
          if (embed_stress_flux)
    	embed_stress_flux (point, u, mu, &c, &d);
    #endif // EMBED
          foreach_dimension()
    	a += taux.x[1] - taux.x[];
          res.x[] = r.x[] - rho[]*lambda.x*u.x[] + dt*(a/Delta - (c.x + d.x*u.x[]));
          if (fabs (res.x[]) > maxres)
    	maxres = fabs (res.x[]);
        }
      }
      boundary (resl);
    #else
      /* "naive" discretisation (only 1st order on trees) */
      foreach (reduction(max:maxres)) {
        coord c = {0., 0., 0.}, d = {0., 0., 0.};
    #if EMBED
      if (embed_stress_flux)
        embed_stress_flux (point, u, mu, &c, &d);
    #endif // EMBED    
        foreach_dimension() {
          res.x[] = r.x[] - rho[]*lambda.x*u.x[] +
            dt*(2.*mu.x[1,0]*face_gradient_x (u.x, 1)
    	    - 2.*mu.x[]*face_gradient_x (u.x, 0)
            #if dimension > 1
    	    + mu.y[0,1]* (face_gradient_y (u.x, 1) +
    			  face_avg_gradient_t1_x (u.y, 1))
    	    - mu.y[]*(face_gradient_y (u.x, 0) +
    		      face_avg_gradient_t1_x (u.y, 0))
    	#endif
            #if dimension > 2
    	    + mu.z[0,0,1]*(face_gradient_z (u.x, 1) +
    			   face_avg_gradient_t2_x (u.z, 1))
    	    - mu.z[]*(face_gradient_z (u.x, 0) +
    		      face_avg_gradient_t2_x (u.z, 0))
    	#endif
    	    )/Delta - dt*(c.x + d.x*u.x[]);
          if (fabs (res.x[]) > maxres)
    	maxres = fabs (res.x[]);
        }
      }
    #endif
      return maxres;
    }
    
    #undef lambda
    
    double TOLERANCE_MU = 0.; // default to TOLERANCE
    
    trace
    mgstats viscosity (struct Viscosity p)
    {
      vector u = p.u, r[];
      scalar rho = p.rho;  
      foreach()
        foreach_dimension()
          r.x[] = rho[]*u.x[];
    
      face vector mu = p.mu;
      restriction ({mu, rho});
    
    #if EMBED
      p.embed_stress_flux = u.x.boundary[embed] != antisymmetry ? embed_stress_flux : NULL;
    #endif // EMBED
      return mg_solve ((scalar *){u}, (scalar *){r},
    		   residual_viscosity, relax_viscosity, &p, p.nrelax, p.res,
    		   minlevel = 1, // fixme: because of root level
                                     // BGHOSTS = 2 bug on trees
    		   tolerance = TOLERANCE_MU);
    }