sandbox/ghigo/src/myviscosity-embed.h

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79
    80
    81
    82
    83
    84
    85
    86
    87
    88
    89
    90
    91
    92
    93
    94
    95
    96
    97
    98
    99
    100
    101
    102
    103
    104
    105
    106
    107
    108
    109
    110
    111
    112
    113
    114
    115
    116
    117
    118
    119
    120
    121
    122
    123
    124
    125
    126
    127
    128
    129
    130
    131
    132
    133
    134
    135
    136
    137
    138
    139
    140
    
    #include "mypoisson.h"
    
    struct Viscosity {
      vector u;
      face vector mu;
      scalar rho;
      double dt;
      int nrelax;
      scalar * res;
      double (* embed_flux) (Point, scalar, vector, double *);
    };
    
    #if AXI
    // fixme: RHO here not correct
    # define lambda ((coord){1., 1. + dt/RHO*(mu.x[] + mu.x[1] + \
    					  mu.y[] + mu.y[0,1])/2./sq(y)})
    #else // not AXI
    # if dimension == 1
    #   define lambda ((coord){1.})
    # elif dimension == 2
    #   define lambda ((coord){1.,1.})
    # elif dimension == 3
    #   define lambda ((coord){1.,1.,1.})
    #endif
    #endif
    
    // Note how the relaxation function uses "naive" gradients i.e. not
    // the face_gradient_* macros.
    
    static void relax_diffusion (scalar * a, scalar * b, int l, void * data)
    {
      struct Viscosity * p = (struct Viscosity *) data;
      (const) face vector mu = p->mu;
      (const) scalar rho = p->rho;
      double dt = p->dt;
      vector u = vector(a[0]), r = vector(b[0]);
    
      double (* flux) (Point, scalar, vector, double *) = p->embed_flux;
      foreach_level_or_leaf (l) {
        double avgmu = 0.;
        foreach_dimension()
          avgmu += mu.x[] + mu.x[1];
        avgmu = dt*avgmu + SEPS;
        foreach_dimension() {
          double c = 0.;
          double d = flux ? flux (point, u.x, mu, &c) : 0.;
          scalar s = u.x;
          double a = 0.;
          foreach_dimension()
    	a += mu.x[1]*s[1] + mu.x[]*s[-1];
          u.x[] = (dt*a + (r.x[] - dt*c)*sq(Delta))/
    	(sq(Delta)*(rho[]*lambda.x + dt*d) + avgmu);
        }
      }
    
    #if TRASH
      vector u1[];
      foreach_level_or_leaf (l)
        foreach_dimension()
          u1.x[] = u.x[];
      trash ({u});
      foreach_level_or_leaf (l)
        foreach_dimension()
          u.x[] = u1.x[];
    #endif
    }
    
    static double residual_diffusion (scalar * a, scalar * b, scalar * resl, 
    				  void * data)
    {
      struct Viscosity * p = (struct Viscosity *) data;
      (const) face vector mu = p->mu;
      (const) scalar rho = p->rho;
      double dt = p->dt;
      double (* flux) (Point, scalar, vector, double *) = p->embed_flux;
      vector u = vector(a[0]), r = vector(b[0]), res = vector(resl[0]);
      double maxres = 0.;
    #if TREE
      /* conservative coarse/fine discretisation (2nd order) */
      foreach_dimension() {
        scalar s = u.x;
        face vector g[];
        foreach_face()
          g.x[] = mu.x[]*face_gradient_x (s, 0);
        foreach (reduction(max:maxres)) {
          double a = 0.;
          foreach_dimension()
    	a += g.x[] - g.x[1];
          res.x[] = r.x[] - rho[]*lambda.x*u.x[] - dt*a/Delta;
          if (flux) {
    	double c, d = flux (point, u.x, mu, &c);
    	res.x[] -= dt*(c + d*u.x[]);
          }
          if (fabs (res.x[]) > maxres)
    	maxres = fabs (res.x[]);
        }
      }
    #else
      /* "naive" discretisation (only 1st order on trees) */
      foreach (reduction(max:maxres))
        foreach_dimension() {
          scalar s = u.x;
          double a = 0.;
          foreach_dimension()
    	a += mu.x[0]*face_gradient_x (s, 0) - mu.x[1]*face_gradient_x (s, 1);
          res.x[] = r.x[] - rho[]*lambda.x*u.x[] - dt*a/Delta;
          if (flux) {
    	double c, d = flux (point, u.x, mu, &c);
    	res.x[] -= dt*(c + d*u.x[]);
          }
          if (fabs (res.x[]) > maxres)
    	maxres = fabs (res.x[]);
        }
    #endif
      return maxres;
    }
    
    #undef lambda
    
    double TOLERANCE_MU = 0.; // default to TOLERANCE
    
    trace
    mgstats viscosity (struct Viscosity p)
    {
      vector u = p.u, r[];
      scalar rho = p.rho;
      foreach()
        foreach_dimension()
          r.x[] = rho[]*u.x[];
    
      face vector mu = p.mu;
      restriction ({mu, rho});
    
      p.embed_flux = u.x.boundary[embed] != antisymmetry ? embed_flux : NULL;
      return mg_solve ((scalar *){u}, (scalar *){r},
    		   residual_diffusion, relax_diffusion, &p, p.nrelax, p.res,
    		   minlevel = 1, // fixme: because of root level
                                      // BGHOSTS = 2 bug on trees
    		   tolerance = TOLERANCE_MU);
    }