sandbox/geoffroy/friction/fricfluv_darcy_0.c

    Friction in saint-venant : Fluvial Test case with Darcy at order 1 for source term

    In this example, we reproduce the MacDonald benchmark[1]. We test the friction source term in a fluvial flow. The leading equations can be written as : \displaystyle \begin{array}{cc} \partial_t h + \partial_x q = 0 \\ \partial_t q + \partial_x \left(\frac{q^2}{h}+ \frac{1}{2} g h^2 \right) = -gh (S_0 + S_f) \end{array} S_0 is the slope and S_f is the friction term in its kinematic form.

    Declarations

    We call the saint venant solver in 1D.

    #include "grid/cartesian1D.h"
    #include "saint-venant.h"
    
    int LEVEL;
    
    scalar e[];
    double e1 = 0., e2 = 0., emax = 0.;
    int ne = 0;
    double pause, tmax, f, q0 = 1.5, z0, zf, h0, tb = 2500;
    
    // Analytical solution for h and dh/dx
    double hex(double x) {
      return pow(4/G,1/3.)*(1 + 0.5*exp(-16*pow(-0.5 + x/1000.,2)));
    }
    
    double dhex(double x) {
      return -0.016*pow(4/G,1/3.)*exp(-16*pow(-0.5 + x/1000.,2))*(-0.5 + x/1000.);
    }
    
    // Darcy friction term in kinematic formulation
    double sf(double x){
      return  -f/(8*G)*q0*q0/pow(hex(x),3);
    }
    
    // Z and dz/dx
    double dzex(double x) {
      return (q0*q0/(G*pow(hex(x),3))-1)*dhex(x)+sf(x);
    }
    double zex(double x, double z){
      double dx = L0/N;
      return z + dx/4.*(dzex(x-dx)+2*dzex(x-0.5*dx)+dzex(x));
    }

    Parameters

    Definition of parameters and calling of the saint venant subroutine run().

    int main()
    {
      f = 0.093;
      pause=0.2;
      L0 = 1000.;
      X0 = 0;
      G = 9.81;
      tmax = 3001;
      for( LEVEL = 6; LEVEL <= 10; LEVEL++){  
        e1 = e2 = emax = 0.;
        ne = 0;
        N = 1 << LEVEL;
        run();
        fprintf (stderr, "%d %g %g %g\n", N, e1/ne, sqrt(e2)/ne, emax/ne);
      }
    }

    Boundary condition

    We fix h and q at both boundaries (fluvial case).

    h[left] = dirichlet(max(hex(0),0));
    eta[left] =  dirichlet(max(hex(0)+zb[],zb[]));
    u.n[left] = dirichlet(max(q0/hex(0),0));
    
    h[right] = dirichlet(max(hex(1000),0));
    eta[right] =  dirichlet(max(hex(1000)+zb[],zb[]));
    u.n[right] = dirichlet(max(q0/hex(1000),0));

    Initial conditions

    event init (i = 0)
    {
      // Because the slope is initially dry, we fix an artificial time-step. 
      DT = 1e-2;
      z0=0;
      foreach(){
        zb[] = zex(x,z0);
        z0=zb[];
        u.x[] = 0;
        h[]=0;
        zf=z0;
      }
      boundary(all);
    }

    Friction

    We compute the source term at order 1

    event friction (i++)
    {
      foreach(){
        if(h[] > dry)
          u.x[] /= 1 + dt*f*u.x[]/(8*h[]);
      }
    }

    Computing error

    Noticing tb the time when the flow is already stationary, we define the following relative error norms [2]:

    \displaystyle |h|_1 = \frac{\int_{tb}^T \int_0^L |h() - hex()| dx dt}{(T-tb)*L} \displaystyle |h|_2 = \frac{\sqrt{\int_{tb}^T \int_0^L (h() - hex()^2 dx dt}}{(T-tb)*L} \displaystyle |h|_{max} = \frac{\int_{tb}^T max(h() - hex())}{T-tb}

    event error (i++; t<=tmax) {
      foreach()
          e[] = (h[] - hex(x));
      norm no = normf (e);
      if(t > tb){
        e1 += no.avg;
        e2 += no.rms*no.rms;
        ne++;
        if (no.max > emax)
          emax = no.max;
      }
       if( N == 1024){
        static FILE * fp1 = fopen("ErrorN1024.dat","w");
        fprintf(fp1,"%g \t %g \t %g \t %g \n",t,no.avg,no.rms,no.max);
      }
    }

    Gnuplot output

    We can use gnuplot to produce an animation of the water surface.

    /*
    event plot ( t <= tmax; t += 10 ) {
        if( N == 32 || N == 128 ){
          printf("set title 'Manning friction fluvial ----- t= %.3g , N = %i '\n"
    	     "p[%g:%g][-5:1]  '-' u 1:($2+$4) t'free surface' w p pt 1,"
    	     "'' u 1:4 t'topo' w l lt 4,"
    	     "'' u 1:5 t'Analytical' w l lt -1 \n",t,N,X0,X0+L0);
          foreach()
    	printf (" %g %g %g %g %g %g\n", x, h[], u.x[], zb[],hex(x)+zb[], t);
          printf ("e\n"
    	      "pause %.4g \n\n",pause);
        }
    }
    */

    Print the water profile along the channel at final time.

    event printprofile ( t = tmax-1 ){
        char name[100];
        FILE * fp;
        sprintf(name,"profil-%i.dat",N);
        fp=fopen(name,"w");
        foreach() {
          fprintf(fp,"%g  \t %g  \t %g \t %g \t %g   \n"
    	      ,x,h[],zb[],hex(x),u.x[]);
        }
        fclose(fp);
    }

    Results

    Error convergence

    Error convergence

    Error time

    Error time

    Water depth profiles

    Water depth profiles

    References

    [1] I. MacDonald, M. Baines, N. Nichols, and P. G. Samuels, “Analytic Benchmark Solutions for Open-Channel Flows,” no. November, pp. 1041–1045, 1997.

    [2] S. Popinet, “Quadtree-adaptive tsunami modelling,” Ocean Dyn., vol. 61, no. January, pp. 1261–1285, 2011.