sandbox/fuster/Allmach3.0/stepAllMach.c

    A Mach-3 wind tunnel with a step

    This test included in the review paper of Woodward & Colella, 1984 shows the interaction between a shock wave and a step.

    In this case we use the Bell-Colella-Glaz advection scheme using the minmod2 slope limiter

    This script obtain the isocontours below that can be compared with Woodward & Colella, 1984

    two-phase-compressible.h: No such file or directory
    #include "two-phase-compressible.h"
    
    # define LEVEL 10
    
    double rho0 = 1.4;
    double p0 = 1.;
    double tend = 2.;

    Boundary conditions

    q.n[left]  	= dirichlet(3*rho0);
    q.t[left]  	= dirichlet(0.);
    
    q.n[right] 	= neumann(0.);
    fE1[right]	= neumann(0.);
    frho1[right] 	= neumann(0.);
      
    q.n[bottom] 	= dirichlet(0.);
    q.t[bottom] 	= neumann(0.);
    	
    q.n[top] 	= dirichlet(0.);
    q.t[top] 	= neumann(0.);
    	
    frho1[left]	= dirichlet(rho0);

    Main program

    int main() {
    
      gamma1 = 1.4; 
    
      size (3. [0]);
      DT = HUGE [0];
      init_grid (1 << LEVEL);
      run(); 
    }
    
    event init (t = 0)
    {
      mask (y > 1. ? top : none); 
      mask ( (x > 0.6 && y < 0.2) ? bottom : none );
    
      f.gradient = minmod2;
      theta = 1.3;
    
      foreach() {
        f[]         = 1.;
        p[]		= p0;
        frho1[]	= rho0;
        frho2[] 	= 0.;
        q.x[] 	= 3*frho1[];
        q.y[] 	= 0.;
        fE1[]	= p[]/(gamma1 - 1.) + 0.5*pow(q.x[],2)/frho1[];
        fE2[] 	= 0.;
      }
    }

    We test the grid adaptation

    event adapt (i++) {
      adapt_wavelet((scalar *){p},(double[]){0.1},maxlevel = LEVEL);
    }

    Output

    event logfile (i++) {
      if (i == 0)
        fprintf (ferr, "t dt grid->tn perf.t perf.speed\n");
      fprintf (ferr, "%g %g %ld %g %g\n", t, dt, grid->tn, perf.t, perf.speed);
    }

    Movies

    event movies (i += 5)
    {
      static FILE * fp1 = popen ("ppm2mp4 rho.mp4", "w");
      output_ppm (frho1, fp1, box = {{0.,0.},{3.,1.}},
    	      linear = true, spread = 2, n = 512);
    
      scalar l[];
      foreach()
        l[] = level;
    
      static FILE * fp2 = popen ("ppm2mp4 level.mp4", "w");
      output_ppm (l, fp2, box = {{0.,0.},{3.,1.}},
    	      linear = false, min = 0, max = LEVEL, n = 512); 
    }

    Evolution of the density field

    Evolution of the level of refinement

    We plot the evolution of iso-density contours.

    Evolution of iso-density contours

    Evolution of iso-density contours

    event isovalue (t += tend/20.; t <= tend)
    {
      static FILE * fp = popen ("gnuplot", "w");
      if (t == 0.)
        fprintf (fp,
    	     "set term gif animate crop\n"
    	     "set output 'tmp.gif'\n"
    	     "set xrange [0:3]\n"
    	     "set yrange [0:1]\n"
    	     "unset surface\n"
    	     "set view map\n"
    	     "unset key\n"
    	     "set size ratio -1\n"
    	     "set contour base\n"
     	     // "set cntrlabel onecolor\n"
     	     "unset clabel\n"
    	     "set cntrparam levels incremental 0.267,(6.75-0.267)/30,6.75\n"
    	     );
      fprintf (fp, "splot '-' w l lt -1\n");
      output_field ({rho}, fp, n = 512, linear = true);
      fputs ("e\n", fp);
      fflush (fp);
    }
    
    event end (t = tend)
    {
      FILE * fp = fopen ("rho.end", "w");
      output_field ({rho}, fp, n = 512, linear = true);
      fclose (fp);
    
      system ("gifsicle --optimize --delay 10 --loopcount=0 tmp.gif > isovalue.gif "
    	  "&& rm -f tmp.gif");
    }

    References

    [woodward1984]

    Paul Woodward and Phillip Colella. The numerical simulation of two-dimensional fluid flow with strong shocks. Journal of computational physics, 54(1):115–173, 1984. [ .pdf ]