sandbox/easystab/stab2014/free_surface_gravity_total_pressure
Free-surface-gravity: displaying total pressure
In this code, we take the code that display the animation of the free surface waves free_surface_gravity_particles.m and we show total pressure instead of only the pressure disturbance (it means that we add hydrostatic pressure to the pressure field) to see what changes.
In a fluid, hydrostatic pressure is determined by the formula below: p=\rho.g.y where:
p is the hydrostatic pressure (Pa)
\rho is the fluid density (kg/m^{3})
g is the gravational acceleration (m/s^{2})
y is the height of the point (m)
So we will add the hydrostatic pressure p to our pressure field to obtain the total pressure in our case.
Dependency:
- chebdif.m for the Chebychev differentiation matrices
clear all; clf; n=100; % number of gridpoints alpha=1; % wavenumber
in x L=2; % Fluid height in y rho=1; % fluid density mu=0.0001; % fuid
viscosity g=1; % gravity % differentiation matrices scale=-2/L; [y,DM] =
chebdif(n,2); D=DM(:,:,1)scale;
DD=DM(:,:,2)scale^2;
y=(y-1)/scale; I=eye(n); Z=zeros(n,n); % renaming the matrices dy=D;
dyy=DD; dx=ialphaI; dxx=-alpha^2I; Delta=dxx+dyy; % System
matrices A=[muDelta, Z, -dx, Z(:,1); … Z, muDelta, -dy, Z(:,1);
… dx, dy, Z, Z(:,1); … Z(1,:),I(n,:),Z(1,:),0];
E=blkdiag(rhoI,rhoI,Z,1); % boundary conditions
loc=[1,n,n+1,2*n]; C=[I(1,:),Z(1,:),Z(1,:),0; … Z(1,:),I(1,:),Z(1,:),0;
… Z(1,:),Z(1,:),-I(n,:),rho*g; … dy(n,:),dx(n,:),Z(1,:),0];
E(loc,:)=0;
A(loc,:)=C; % compute eigenmodes [U,S]=eig(A,E); s=diag(S);
[t,o]=sort(-real(s)); s=s(o); U=U(:,o); rem=abs(s)>1000; s(rem)=[];
U(:,rem)=[];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % particle
animation of the eigenmodes
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %
parameters nper=1; % number of periods of oscillation nt=30; % number of
time steps per period nx=40; % number of points in x modesel=1; % which
more do animate % select the eigenmode u=1:n; v=u+n; p=v+n;
eta=3n+1; q=U(:,modesel); lambda=s(modesel); % The time and x
extent tvec=linspace(0,nper2pi/abs(lambda),npernt);
dt=tvec(2)-tvec(1); Lx=2pi/alpha; x=linspace(0,Lx,nx); % scale mode
amplitude q=0.05q/abs(q(eta)); % initialize tracer particles
[px,py]=meshgrid(linspace(0,Lx,60),linspace(0,L,30));
py=py.(1+2real(exp(lambdatvec(1))q(eta)exp(ialphapx))/L);
px=px(:);py=py(:);
figure(1) % time loop for ind=1:npernt % expand mode to physical
space
qq=2real(exp(lambdatvec(ind))qexp(ialphax));
% plot pressure
surf(x,y,qq(p,:)-10+kron(ones(1,nx),rhogy),‘facealpha’,0.3);
view(2); shading interp; hold on % plot free surface
plot(x,L+qq(eta,:),‘k-’,x,0x+L,‘k–’); hold on %%%% plot the
particles plot(mod(px,Lx),py,‘k.’); pu=interp1(y,q(u),py);
pv=interp1(y,q(v),py); % For particles above L, use Taylor expansion for
velocity pu(py>L)=q(u(n))+q(eta)dy(n,:)q(u);
pv(py>L)=q(v(n))+q(eta)dy(n,:)q(v); % expand to physical
space
puu=2real(exp(lambdatvec(ind))pu.exp(ialphapx));
pvv=2real(exp(lambdatvec(ind))pv.exp(ialphapx));
% advect particles px=px+puudt; py=py+pvvdt; xlabel(‘x’);
ylabel(‘y’); title(‘Free surface gravity with total pressure - Mode 1’);
axis equal; axis([0,Lx,0,1.3*L]); grid off hold off drawnow end
set(gcf,‘paperpositionmode’,‘auto’);
print(‘-dpng’,‘-r100’,‘free_surface_gravity_total_pressure.png’);
figure(2) % initialize tracer particles
[px,py]=meshgrid(linspace(0,Lx,60),linspace(0,L,30));
py=py.(1+2real(exp(lambdatvec(1))q(eta)exp(ialphapx))/L);
px=px(:);py=py(:); for ind=1:npernt % expand mode to physical space
qq=2real(exp(lambdatvec(ind))qexp(ialphax));
% plot pressure surf(x,y,qq(p,:)-10,‘facealpha’,0.3); view(2); shading
interp; hold on % plot free surface
plot(x,L+qq(eta,:),‘k-’,x,0x+L,‘k–’); hold on %%%% plot the
particles plot(mod(px,Lx),py,‘k.’); pu=interp1(y,q(u),py);
pv=interp1(y,q(v),py); % For particles above L, use Taylor expansion for
velocity pu(py>L)=q(u(n))+q(eta)dy(n,:)q(u);
pv(py>L)=q(v(n))+q(eta)dy(n,:)q(v); % expand to physical
space
puu=2real(exp(lambdatvec(ind))pu.exp(ialphapx));
pvv=2real(exp(lambdatvec(ind))pv.exp(ialphapx));
% advect particles px=px+puudt; py=py+pvv*dt; xlabel(‘x’);
ylabel(‘y’); title(‘Free surface gravity with pressure disturbance -
Mode 1’); axis equal; axis([0,Lx,0,1.3*L]); grid off hold off
drawnow
end set(gcf,‘paperpositionmode’,‘auto’);
print(‘-dpng’,‘-r100’,‘free_surface_gravity_pressure_disturbance.png’);
#Figures


So we see that because the value of hydrostatic pressure is much higher than the pressure disturbance so the total pressure is almost the same as the hydrostatic pressure, it only depends on the height of the points. %}