sandbox/b-flood/Testcases/fluv2tor-m.c

    Transcritical test case with Manning friction

    Declarations

    We call the Saint-Venant solver on a 1D grid and we add the Manning friction term.

    #include "grid/cartesian1D.h"
    #include "b-flood/saint-venant-topo.h"
    #include "b-flood/manning.h"
    
    int LEVEL;
    
    scalar e[];
    norm nerror;
    double tmax = 1000, q0 = 2, z0;
    double dx;
    
    // Analytical solution for h(x) and dh/dx
    double hex (double x) {
      if (x <= 500)
        return pow(4/G,1/3.)*(1 - 1/3.*tanh(3*(x/1000.-1/2.)));
      else
        return pow(4/G,1/3.)*(1 - 1/6.*tanh(6*(x/1000.-1/2.)));
    }
    
    double dhex (double x) {
      if (x <= 500)
        return -pow(4/G,1/3.)/(1000*sq(cosh(3/2.-3*x/1000.)));
      else
        return -pow(4/G,1/3.)/(1000*sq(cosh(3-3*x/500.)));
    }
    
    // Manning's friction term
    double sfm (double x) {
      return -sq(n)*sq(q0)/pow(hex(x),10/3.);
    }
    
    // Z and dz/dx
    // We use Runge-Kuta 4 algo to fix the topography
    
    double dzex (double x) {
      return (sq(q0)/(G*cube(hex(x)))-1)*dhex(x) + sfm(x);
    }
    
    double zex (double x, double z) { 
      return z + dx/4.*(dzex(x-dx)+2*dzex(x-0.5*dx)+dzex(x));
    }

    Parameters

    Definition of parameters and calling of the saint-venant-topo subroutine run().

    int main()
    {
      n = 0.0218;
      L0 = 1000.;
      X0 = 0;
      G = 9.81;
      tmax = 1000;
      for (LEVEL = 4; LEVEL <= 9; LEVEL++) {
        N = 1 << LEVEL;
        dx = L0/N;
        run();
        fprintf (stderr, "%d %g %g\n", N, nerror.avg, nerror.rms);
      }
    }

    Boundary condition

    We fix h and u at the left boundary (fluvial).

    h[left] = dirichlet(max(hex(0),0));
    eta[left] =  dirichlet(max(hex(0)+zb[],zb[]));
    u.n[left] = dirichlet(max(q0/hex(0),0));

    We fix a free exit condition on the right boundary (torrential).

    u.n[right] = neumann(0);
    h[right] =  neumann(0);
    eta[right] = neumann(0);

    Initial conditions

    event init (i = 0)
    {
      // Because the slope is initially dry, we set a maximum time-step. 
      DT = 1e-2;
      // the topography start at the altitude z = 0 at the left of the domain
      z0 = 0;
      foreach() {
        zb[] = zex(x,z0);
        z0 = zb[];
        u.x[] = 0;
        h[] = 0;
      }
      boundary (all);
    }

    Error norms

    We compute the differents error norms.

    event error (i++; t <= tmax)
    {
      foreach()
        e[] = h[] - hex(x);  
      nerror = normf (e);
    }

    Gnuplot output

    We print the water profile along the channel at the final time for each resolution.

    event printprofile (t = tmax)
    {
      char name[100];
      FILE * fp;
      sprintf (name, "profil-%i.dat", N);
      fp = fopen (name, "w");
      foreach()
        fprintf (fp,"%g\t%g\t%g\t%g\t%g\n", x, h[], zb[], hex(x), u.x[]);
      fclose (fp);
    }

    References

    [macdonald1997analytic]

    I MacDonald, MJ Baines, NK Nichols, and PG Samuels. Analytic benchmark solutions for open-channel flows. Journal of Hydraulic Engineering, 123(11):1041–1045, 1997. [ DOI ]

    Results

    set xlabel 'L (m)' 
    set ylabel 'Height (m)' 
    set xtics 
    set ytics
    plot [][] './profil-512.dat' u 1:($3+$4) w l lw 0.5 \
                    axes x1y1 t 'exact solution :Zb + he', \
              './profil-512.dat' u 1:($2+$3) w l lt 0 lw 7 \
                    axes x1y1 t 'N=512 :Zb + h', \
              './profil-32.dat' u 1:($2+$3) axes x1y1 t 'N=32: Zb + h', \
              './profil-512.dat' u 1:3 w l axes x1y1 t 'topo: Zb'
    Free surface and topography (script)

    Free surface and topography (script)

    set logscale
    set xlabel 'Number of cells N' 
    set ylabel 'Error norm (m)' 
    set xtics 
    set ytics
    set cbrange [1:2]
    ftitle(a,b) = sprintf("order %4.2f", -b)
    f1(x) = a1 + b1*x
    fit f1(x) 'log' u (log($1)):(log($2)) via a1,b1
    f2(x) = a2 + b2*x
    fit f2(x) 'log' u (log($1)):(log($3)) via a2,b2
    plot exp (f1(log(x))) t ftitle(a1,b1), './log' u 1:2 t 'average error', \
         exp (f2(log(x))) t ftitle(a2,b2), './log' u 1:3 t 'rms error'
    Error convergence (script)

    Error convergence (script)