sandbox/acastillo/output_fields/xdmf/output_xdmf_helpers.h

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79
    80
    81
    82
    83
    84
    85
    86
    87
    88
    89
    90
    91
    92
    93
    94
    95
    96
    97
    98
    99
    100
    101
    102
    103
    104
    105
    106
    107
    108
    109
    110
    111
    112
    113
    114
    115
    116
    117
    118
    119
    120
    121
    122
    123
    124
    125
    126
    127
    128
    129
    130
    131
    132
    133
    134
    135
    136
    137
    138
    139
    140
    141
    142
    143
    144
    145
    146
    147
    148
    149
    150
    151
    152
    153
    154
    155
    156
    157
    158
    159
    160
    161
    162
    163
    164
    165
    166
    167
    168
    169
    170
    171
    172
    173
    174
    175
    176
    177
    178
    179
    180
    181
    182
    183
    184
    185
    186
    187
    188
    189
    190
    191
    192
    193
    194
    195
    196
    197
    198
    199
    200
    201
    202
    203
    204
    205
    206
    207
    208
    209
    210
    211
    212
    213
    214
    215
    216
    217
    218
    219
    220
    221
    222
    223
    224
    225
    226
    227
    228
    229
    230
    231
    232
    233
    234
    235
    236
    237
    238
    239
    240
    241
    242
    243
    244
    245
    246
    247
    248
    249
    250
    251
    252
    253
    254
    255
    256
    257
    258
    259
    260
    261
    262
    263
    264
    265
    266
    267
    268
    269
    270
    271
    272
    273
    274
    275
    276
    277
    278
    279
    280
    281
    282
    283
    284
    285
    286
    287
    288
    289
    290
    291
    292
    293
    294
    295
    296
    297
    298
    299
    300
    301
    302
    303
    304
    305
    306
    307
    308
    309
    310
    311
    312
    313
    314
    315
    316
    317
    318
    319
    320
    321
    322
    323
    324
    325
    326
    327
    328
    329
    330
    331
    332
    333
    334
    335
    336
    337
    338
    339
    340
    341
    342
    343
    344
    345
    346
    347
    348
    349
    350
    351
    352
    353
    354
    355
    356
    357
    358
    359
    360
    361
    362
    363
    364
    365
    366
    367
    368
    369
    370
    371
    372
    373
    374
    375
    376
    377
    378
    379
    380
    381
    382
    383
    384
    385
    386
    387
    388
    389
    390
    391
    392
    393
    394
    395
    396
    397
    398
    399
    400
    401
    402
    403
    404
    405
    406
    407
    408
    409
    410
    411
    412
    413
    414
    415
    416
    417
    418
    419
    420
    421
    422
    423
    424
    425
    426
    427
    428
    429
    430
    431
    432
    433
    434
    435
    436
    437
    438
    439
    440
    441
    442
    443
    444
    445
    446
    447
    448
    449
    450
    451
    452
    453
    454
    455
    456
    457
    458
    459
    460
    461
    462
    463
    464
    465
    466
    467
    468
    469
    470
    471
    472
    473
    474
    475
    476
    477
    478
    479
    480
    481
    482
    483
    484
    485
    486
    487
    488
    489
    490
    491
    492
    493
    494
    495
    496
    497
    498
    499
    500
    501
    502
    503
    504
    505
    506
    507
    508
    509
    510
    511
    512
    513
    514
    515
    516
    517
    518
    519
    520
    521
    522
    523
    524
    525
    526
    527
    528
    529
    530
    531
    532
    533
    534
    535
    536
    537
    538
    539
    540
    541
    542
    543
    544
    545
    546
    547
    548
    549
    550
    551
    552
    553
    554
    555
    556
    
    // Helper functions for output_xdmf.h
    
    
    // Write the XDMF header elements to the file
    void write_xdmf_header(FILE *fp, const char *file_name){
    	fputs("<?xml version=\"1.0\"?>\n", fp);
    	fputs("<!DOCTYPE Xdmf SYSTEM \"Xdmf.dtd\" [\n", fp);
        fprintf(fp, "<!ENTITY HeavyData \"%s:\">\n", file_name);
        fputs("]>\n", fp);
    	fputs("<Xdmf xmlns:xi=\"http://www.w3.org/2003/XInclude\" Version=\"3.0\">\n", fp);
    }
    
    
    // Function to write points data array to the VTU file
    void write_xdmf_topology(FILE *fp, int dim, int num_cells, int num_points, double t) {
    
        fputs("\t<Domain>\n", fp);
    	fputs("\t\t<Grid Name=\"Unstructured Grid\" GridType=\"Uniform\">\n", fp);
    	fprintf(fp, "\t\t\t<Time Type=\"Single\" Value=\"%g\" />\n", t);
    
    	// Write topology based on the dimension
    	if (dim == 2){
    		// Write 2D topology (Quadrilateral)
    		fprintf(fp, "\t\t\t<Topology TopologyType=\"Quadrilateral\" NumberOfElements=\"%d\">\n", num_cells);
    		fprintf(fp, "\t\t\t\t<DataItem Format=\"HDF\" Dimensions=\"%d 4\" DataType=\"Int\" Precision=\"8\" >\n", num_cells);
    	} else if (dim == 3) {
    		// Write 3D topology (Hexahedron)
    		fprintf(fp, "\t\t\t<Topology TopologyType=\"Hexahedron\" NumberOfElements=\"%d\">\n", num_cells);
    		fprintf(fp, "\t\t\t\t<DataItem Format=\"HDF\" Dimensions=\"%d 8\" DataType=\"Int\" Precision=\"8\" >\n", num_cells);
    	}
    
        // Write data item and close tags
    	fputs("\t\t\t\t\t&HeavyData;/Topology\n", fp);
    	fputs("\t\t\t\t</DataItem>\n", fp);
    	fputs("\t\t\t</Topology>\n", fp);
    
    	// Write geometry information	
    	fputs("\t\t\t<Geometry GeometryType=\"XYZ\">\n", fp);
    	fprintf(fp, "\t\t\t\t<DataItem Format=\"HDF\" NumberType=\"Float\" Dimensions=\"%d 3\" Precision=\"8\" >\n", num_points);
    	fputs("\t\t\t\t\t&HeavyData;/Geometry/Points\n", fp);
    	fputs("\t\t\t\t</DataItem>\n", fp);
    	fputs("\t\t\t</Geometry>\n", fp);
    }
    
    
    // Function to write attributes for scalars and vectors
    void write_xdmf_attributes(FILE *fp, int num_cells, scalar *slist, vector *vlist) {
    	
    	// Loop over scalars in list and write attributes
    	for (scalar s in slist){
    		fprintf(fp, "\t\t\t<Attribute Name=\"%s\" AttributeType=\"Scalar\" Center=\"Cell\">\n", s.name);
    		fprintf(fp, "\t\t\t\t<DataItem Dimensions=\"%d\" NumberType=\"Float\" Precision=\"8\" Format=\"HDF\">\n", num_cells);
    		fprintf(fp, "\t\t\t\t\t&HeavyData;/Cells/%s\n", s.name);
    		fputs("\t\t\t\t</DataItem>\n", fp);
    		fputs("\t\t\t</Attribute>\n", fp);
    	}
    
    	// Loop over vectors in list and write attributes
    	for (vector v in vlist){
    		fprintf(fp, "\t\t\t<Attribute Name=\"%s\" AttributeType=\"Vector\" Center=\"Cell\">\n", v.x.name);
    		fprintf(fp, "\t\t\t\t<DataItem Dimensions=\"%d 3\" NumberType=\"Float\" Precision=\"8\" Format=\"HDF\">\n", num_cells);
    		fprintf(fp, "\t\t\t\t\t&HeavyData;/Cells/%s\n", v.x.name);
    		fputs("\t\t\t\t</DataItem>\n", fp);
    		fputs("\t\t\t</Attribute>\n", fp);
    	}
    }
    
    // Write the XDMF footer elements to the file
    void write_xdmf_footer(FILE *fp) {
        // Write the closing tags for the XDMF file
        fputs("\t\t</Grid>\n", fp);
        fputs("\t</Domain>\n", fp);
        fputs("</Xdmf>\n", fp);
    }
    
    
    // Count points and cells in each subdomain and total
    void count_points_and_cells(int *num_points_glob, int *num_cells_glob, int *num_points, int *num_cells, scalar per_mask) {    
        foreach_vertex(serial, noauto){
            (*num_points)++;
    	}
    
        foreach (serial, noauto) {
            if (per_mask[]) {
                (*num_cells)++;
            }
        }
    
        MPI_Allreduce(num_points, num_points_glob, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
        MPI_Allreduce(num_cells, num_cells_glob, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
    }
    
    void count_points_and_cells_slice(int *num_points_glob, int *num_cells_glob, int *num_points, int *num_cells, scalar per_mask, coord n = {0, 0, 1}, double _alpha = 0) {    
        foreach_vertex(serial, noauto){
    		shortcut_slice(n,_alpha);
            (*num_points)++;
    	}
    
        foreach (serial, noauto) {
            if (per_mask[]) {
                (*num_cells)++;
            }
        }
    
        MPI_Allreduce(num_points, num_points_glob, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
        MPI_Allreduce(num_cells, num_cells_glob, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
    }
    
    
    // Function to calculate offsets for points and cells in each subdomain
    void calculate_offsets(int *offset_points, int *offset_cells, int num_points, int num_cells, hsize_t *offset) {
        // Arrays to store the number of points and cells in each subdomain
        int list_points[npe()];
        int list_cells[npe()];
    
        // Initialize the arrays to zero
        for (int i = 0; i < npe(); ++i) {
            list_points[i] = 0;
            list_cells[i] = 0;
        }
    
        // Set the number of points and cells for the current subdomain
        list_points[pid()] = num_points; 
        list_cells[pid()] = num_cells; 
    
        // Perform an all-reduce operation to gather the number of points and cells from all subdomains
        MPI_Allreduce(list_points, offset_points, npe(), MPI_INT, MPI_SUM, MPI_COMM_WORLD);
        MPI_Allreduce(list_cells, offset_cells, npe(), MPI_INT, MPI_SUM, MPI_COMM_WORLD);
    
        // Calculate the offset for the points in the current subdomain
        offset[0] = 0;
        if (pid() != 0) {
            // Sum the offsets of the previous subdomains to get the starting offset for the current subdomain
            for (int i = 1; i <= pid(); ++i) {
                offset[0] += offset_points[i - 1];
            }
        }
    }
    
    // Initialize marker to rebuild the topology
    void initialize_marker(vertex scalar marker, hsize_t *offset) {
        int num_points = 0;
        foreach_vertex(serial, noauto) {
            #if !TREE
            # if dimension == 2
            int _k = (point.i - 2) * ((1 << point.level) + 1) + (point.j - 2);
            # else
            int _k = (point.i - 2) * sq((1 << point.level) + 1) + (point.j - 2) * ((1 << point.level) + 1) + (point.k - 2);
            # endif
            #else // TREE
            int _k = num_points;
            #endif
            marker[] = _k + offset[0];
            num_points++;
        }
    }
    
    void initialize_marker_slice(vertex scalar marker, hsize_t *offset, coord n = {0, 0, 1}, double _alpha = 0) {
        int num_points = 0;	
        foreach_vertex(serial, noauto) {
    		marker[] = 0.;
        	shortcut_slice(n,_alpha);
    		marker[] = num_points + offset[0];
            num_points++;
        }
    }
    
    // Function to populate topo_dset based on markers and dimensions
    void populate_topo_dset(long **topo_dset, int num_cells, int *offset_cells, hsize_t *count, hsize_t *offset, scalar per_mask, vertex scalar marker) {
    	// Each process defines dataset in memory and writes to an hyperslab
        count[0] = num_cells;
    	count[1] = pow(2, dimension);
    	offset[0] = 0;
    	offset[1] = 0;
    	if (pid() != 0){
    		for (int i = 1; i <= pid(); ++i){
    			offset[0] += offset_cells[i - 1];
    		}
    	}
    	
    	// Allocate memory for topo_dset
        *topo_dset = (long *)malloc(count[0] * count[1] * sizeof(long));
    
        // Iterate over each cell
    	foreach (serial, noauto){
    		if (per_mask[]){
                // _k exist by default on quad/octrees, but not on multigrid
    			#if !TREE 
    			# if dimension == 2
                // Calculate index for 2D
                int _k = (point.i - 2) * ((1 << point.level)) + (point.j - 2);
    			# else
                // Calculate index for 3D
                int _k = (point.i - 2) * sq((1 << point.level)) + (point.j - 2) * ((1 << point.level)) + (point.k - 2);
    			# endif
    			#endif
    
                // Calculate starting index for topo_dset
                int ii = _k * count[1];
    
                // Assign marker values to topo_dset
    			(*topo_dset)[ii + 0] = (long)marker[];
    			(*topo_dset)[ii + 1] = (long)marker[1, 0];
    			(*topo_dset)[ii + 2] = (long)marker[1, 1];
    			(*topo_dset)[ii + 3] = (long)marker[0, 1];
    
    			#if dimension == 3
                // Additional assignments for 3D
    			(*topo_dset)[ii + 4] = (long)marker[0, 0, 1];
    			(*topo_dset)[ii + 5] = (long)marker[1, 0, 1];
    			(*topo_dset)[ii + 6] = (long)marker[1, 1, 1];
    			(*topo_dset)[ii + 7] = (long)marker[0, 1, 1];
    			#endif
            }
        }
    }
    
    void populate_topo_dset_slice(long **topo_dset, int num_cells, int *offset_cells, hsize_t *count, hsize_t *offset, scalar per_mask, vertex scalar marker, coord n = {0, 0, 1}, double _alpha = 0) {
    	// Each process defines dataset in memory and writes to an hyperslab
        count[0] = num_cells;
    	count[1] = pow(2, dimension-1);
    	offset[0] = 0;
    	offset[1] = 0;
    	if (pid() != 0){
    		for (int i = 1; i <= pid(); ++i){
    			offset[0] += offset_cells[i - 1];
    		}
    	}
    	
    	// Allocate memory for topo_dset
        *topo_dset = (long *)malloc(count[0] * count[1] * sizeof(long));
    
        // Iterate over each cell
    	num_cells = 0;
    	foreach (serial, noauto){
    		if (per_mask[]) {
    			// Calculate index
    			int ii = num_cells * count[1];
    			if (n.x == 1) {
    				(*topo_dset)[ii + 0] = (long)marker[1, 0, 0];
    				(*topo_dset)[ii + 1] = (long)marker[1, 1, 0];
    				(*topo_dset)[ii + 2] = (long)marker[1, 1, 1];
    				(*topo_dset)[ii + 3] = (long)marker[1, 0, 1];
    			}
    			else if (n.y == 1) {
    				(*topo_dset)[ii + 0] = (long)marker[0, 1, 0];
    				(*topo_dset)[ii + 1] = (long)marker[1, 1, 0];
    				(*topo_dset)[ii + 2] = (long)marker[1, 1, 1];
    				(*topo_dset)[ii + 3] = (long)marker[0, 1, 1];
    			}
    			else {
    				(*topo_dset)[ii + 0] = (long)marker[0, 0, 1];
    				(*topo_dset)[ii + 1] = (long)marker[1, 0, 1];
    				(*topo_dset)[ii + 2] = (long)marker[1, 1, 1];
    				(*topo_dset)[ii + 3] = (long)marker[0, 1, 1];
    			}
    			num_cells++;
    		}
        }
    }
    
    
    
    // Function to populate points_dset based on markers and dimensions
    void populate_points_dset(double **points_dset, int num_points, int *offset_points, hsize_t *count, hsize_t *offset) {
    	// Each process defines dataset in memory and writes to an hyperslab
        count[0] = num_points;
    	count[1] = 3;
    	offset[0] = 0;
    	offset[1] = 0;
    	if (pid() != 0){
    		for (int i = 1; i <= pid(); ++i){
    			offset[0] += offset_points[i - 1];
    		}
    	}
    	
    	// Allocate memory for points_dset
        *points_dset = (double *)malloc(count[0] * count[1] * sizeof(double));
    
        // Iterate over each vertex
    	foreach_vertex(serial, noauto){
    		#if !TREE
    		# if dimension == 2
    		int _k = (point.i - 2) * ((1 << point.level) + 1) + (point.j - 2);
    		# else
    		int _k = (point.i - 2) * sq((1 << point.level) + 1) + (point.j - 2) * ((1 << point.level) + 1) + (point.k - 2);
    		# endif
    		#endif
    
    		// Calculate starting index
    		int ii = _k * 3;
    
    		// Store coordinates
    		(*points_dset)[ii + 0] = x;
    		(*points_dset)[ii + 1] = y;
    		#if dimension == 2
    		(*points_dset)[ii + 2] = 0.;
    		#endif
    		#if dimension == 3
    		(*points_dset)[ii + 2] = z;
    		#endif
    	}
    }
    
    void populate_points_dset_slice(double **points_dset, int num_points, int *offset_points, hsize_t *count, hsize_t *offset, coord n = {0, 0, 1}, double _alpha = 0) {
    	// Each process defines dataset in memory and writes to an hyperslab
        count[0] = num_points;
    	count[1] = 3;
    	offset[0] = 0;
    	offset[1] = 0;
    	if (pid() != 0){
    		for (int i = 1; i <= pid(); ++i){
    			offset[0] += offset_points[i - 1];
    		}
    	}
    	
    	// Allocate memory for points_dset
        *points_dset = (double *)malloc(count[0] * count[1] * sizeof(double));
    
        // Iterate over each vertex
    	num_points = 0;
    	foreach_vertex(serial, noauto){
    		shortcut_slice(n,_alpha);
    		
    		// Calculate starting index
    		int ii = num_points * 3;
    		
    		// Store coordinates
    		(*points_dset)[ii + 0] = x;
    		(*points_dset)[ii + 1] = y;
    		(*points_dset)[ii + 2] = z;
    		num_points++;
    	}
    }
    
    // Function to populate scalar_dset using the the scalar s
    void populate_scalar_dset(scalar s, double *scalar_dset, int num_cells, int *offset_cells, hsize_t *count, hsize_t *offset, scalar per_mask) {
    	// Each process defines dataset in memory and writes to an hyperslab
        count[0] = num_cells;
    	count[1] = 1;
    	offset[0] = 0;
    	offset[1] = 0;
    	if (pid() != 0){
    		for (int i = 1; i <= pid(); ++i){
    			offset[0] += offset_cells[i - 1];
    		}
    	}	
    	
        foreach (serial, noauto){
    		if (per_mask[]) {
    			#if !TREE
    			# if dimension == 2
    			int _k = (point.i - 2) * ((1 << point.level)) + (point.j - 2);
    			# else
    			int _k = (point.i - 2) * sq((1 << point.level)) + (point.j - 2) * ((1 << point.level)) + (point.k - 2);
    			# endif
    			#endif
    
                // Store values
    			scalar_dset[_k] = s[];
    		}
    	}
    }
    
    void populate_scalar_dset_slice(scalar s, double *scalar_dset, int num_cells, int *offset_cells, hsize_t *count, hsize_t *offset, scalar per_mask, coord n = {0, 0, 1}, double _alpha = 0) {
    	// Each process defines dataset in memory and writes to an hyperslab
        count[0] = num_cells;
    	count[1] = 1;
    	offset[0] = 0;
    	offset[1] = 0;
    	if (pid() != 0){
    		for (int i = 1; i <= pid(); ++i){
    			offset[0] += offset_cells[i - 1];
    		}
    	}
    
    	num_cells = 0;
    	foreach (serial, noauto){
    		if (per_mask[]){
    			if (n.x == 1)
    				scalar_dset[num_cells] = 0.5 * (val(s) + val(s, 1, 0, 0));
    			else if (n.y == 1)
    				scalar_dset[num_cells] = 0.5 * (val(s) + val(s, 0, 1, 0));
    			else
    				scalar_dset[num_cells] = 0.5 * (val(s) + val(s, 0, 0, 1));
    			num_cells++;
    		}
    	}
    }
    
    // Function to populate vector_dset using the vector v
    void populate_vector_dset(vector v, double *vector_dset, int num_cells, int *offset_cells, hsize_t *count, hsize_t *offset, scalar per_mask) {
    	// Each process defines dataset in memory and writes to an hyperslab
        count[0] = num_cells;
    	count[1] = 3;
    	offset[0] = 0;
    	offset[1] = 0;
    	if (pid() != 0){
    		for (int i = 1; i <= pid(); ++i){
    			offset[0] += offset_cells[i - 1];
    		}
    	}	
    	
        foreach (serial, noauto){
    		if (per_mask[]) {
    			#if !TREE
    			# if dimension == 2
    			int _k = (point.i - 2) * ((1 << point.level)) + (point.j - 2);
    			# else
    			int _k = (point.i - 2) * sq((1 << point.level)) + (point.j - 2) * ((1 << point.level)) + (point.k - 2);
    			# endif
    			#endif
    			
                // Calculate starting index
    			int ii = _k*3;
    
                // Store each component
    			vector_dset[ii + 0] = v.x[];
    			vector_dset[ii + 1] = v.y[];
    			#if dimension == 2
    			vector_dset[ii + 2] = 0.;
    			#else
    			vector_dset[ii + 2] = v.z[];
    			#endif			
    		}
    	}
    }
    
    #if dimension == 3
    void populate_vector_dset_slice(vector v, double *vector_dset, int num_cells, int *offset_cells, hsize_t *count, hsize_t *offset, scalar per_mask, coord n = {0, 0, 1}, double _alpha = 0) {
    	// Each process defines dataset in memory and writes to an hyperslab
        count[0] = num_cells;
    	count[1] = 3;
    	offset[0] = 0;
    	offset[1] = 0;
    	if (pid() != 0){
    		for (int i = 1; i <= pid(); ++i){
    			offset[0] += offset_cells[i - 1];
    		}
    	}
    
    	num_cells = 0;
    	foreach (serial, noauto){
    		if (per_mask[])	{
    			int ii = num_cells * 3;
    			if (n.x == 1)
    			{
    				vector_dset[ii + 0] = 0.5 * (val(v.x) + val(v.x, 1, 0, 0));
    				vector_dset[ii + 1] = 0.5 * (val(v.y) + val(v.y, 1, 0, 0));
    				vector_dset[ii + 2] = 0.5 * (val(v.z) + val(v.z, 1, 0, 0));
    			}
    			else if (n.y == 1)
    			{
    				vector_dset[ii + 0] = 0.5 * (val(v.x) + val(v.x, 0, 1, 0));
    				vector_dset[ii + 1] = 0.5 * (val(v.y) + val(v.y, 0, 1, 0));
    				vector_dset[ii + 2] = 0.5 * (val(v.z) + val(v.z, 0, 1, 0));
    			}
    			else
    			{
    				vector_dset[ii + 0] = 0.5 * (val(v.x) + val(v.x, 0, 0, 1));
    				vector_dset[ii + 1] = 0.5 * (val(v.y) + val(v.y, 0, 0, 1));
    				vector_dset[ii + 2] = 0.5 * (val(v.z) + val(v.z, 0, 0, 1));
    			}
    			num_cells++;
    		}
    	}
    }
    #endif
    
    // Function to create a contiguous dataset
    void create_contiguous_dataset(hid_t file_id, hsize_t *count, hsize_t *offset, const char *dataset_name, int num_cells, int num_cells_loc, int num_dims, const void *topo_dset, hid_t datatype) {
        hid_t dataspace_id, dataset_id, memspace_id, acc_tpl1;
        hsize_t dims2[2];
        herr_t status;
    
        // Define dimensions
        dims2[0] = num_cells;
        dims2[1] = num_dims;
    
        // Create the dataspace
        dataspace_id = H5Screate_simple(2, dims2, NULL);
    
        // Create the dataset with chunking properties
        dataset_id = H5Dcreate2(file_id, dataset_name, datatype, dataspace_id, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
        H5Sclose(dataspace_id);
    
        // Define memory space for the dataset
        count[0] = num_cells_loc;
        count[1] = dims2[1];
        memspace_id = H5Screate_simple(2, count, NULL);
    
        // Select hyperslab in the dataset
        dataspace_id = H5Dget_space(dataset_id);
        status = H5Sselect_hyperslab(dataspace_id, H5S_SELECT_SET, offset, NULL, count, NULL);
    
        // Create property list for collective dataset write
        acc_tpl1 = H5Pcreate(H5P_DATASET_XFER);
        status = H5Pset_dxpl_mpio(acc_tpl1, H5FD_MPIO_COLLECTIVE);
    
        // Write data to the dataset
        status = H5Dwrite(dataset_id, datatype, memspace_id, dataspace_id, acc_tpl1, topo_dset);
    
        // Close all HDF5 objects to release resources
        H5Dclose(dataset_id);
        H5Sclose(dataspace_id);
        H5Sclose(memspace_id);
        H5Pclose(acc_tpl1);
    }
    
    // Function to create a chunked dataset
    void create_chunked_dataset(hid_t file_id, hsize_t *count, hsize_t *offset, const char *dataset_name, int num_cells, int num_cells_loc, int num_dims, const void *topo_dset, hid_t datatype, int chunk_size=num_cells_loc) {
        hid_t dataspace_id, dataset_id, memspace_id, plist_id, acc_tpl1;
        hsize_t dims2[2];
        hsize_t chunk_dims[2];
        herr_t status;
    
        // Define dimensions
        dims2[0] = num_cells;
        dims2[1] = num_dims;
    
        // Create the dataspace
        dataspace_id = H5Screate_simple(2, dims2, NULL);
    
        // Create the dataset creation property list and set the chunking properties
        plist_id = H5Pcreate(H5P_DATASET_CREATE);
        chunk_dims[0] = chunk_size;
        chunk_dims[1] = dims2[1];
        H5Pset_chunk(plist_id, 2, chunk_dims);
    
        // Create the dataset with chunking properties
        dataset_id = H5Dcreate2(file_id, dataset_name, datatype, dataspace_id, H5P_DEFAULT, plist_id, H5P_DEFAULT);
        H5Sclose(dataspace_id);
    
        // Define memory space for the dataset
        count[0] = num_cells_loc;
        count[1] = dims2[1];
        memspace_id = H5Screate_simple(2, count, NULL);
    
        // Select hyperslab in the dataset
        dataspace_id = H5Dget_space(dataset_id);
        status = H5Sselect_hyperslab(dataspace_id, H5S_SELECT_SET, offset, NULL, count, NULL);
    
        // Create property list for collective dataset write
        acc_tpl1 = H5Pcreate(H5P_DATASET_XFER);
        status = H5Pset_dxpl_mpio(acc_tpl1, H5FD_MPIO_COLLECTIVE);
    
        // Write data to the dataset
        status = H5Dwrite(dataset_id, datatype, memspace_id, dataspace_id, acc_tpl1, topo_dset);
    
        // Close all HDF5 objects to release resources
        H5Dclose(dataset_id);
        H5Sclose(dataspace_id);
        H5Sclose(memspace_id);
        H5Pclose(plist_id);
        H5Pclose(acc_tpl1);
    }