sandbox/abockmann/Stokes5.h

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79
    80
    81
    82
    83
    84
    85
    86
    87
    88
    89
    90
    91
    92
    93
    94
    95
    96
    97
    98
    99
    100
    101
    102
    103
    104
    105
    106
    107
    108
    109
    110
    111
    112
    113
    114
    115
    116
    117
    118
    119
    120
    121
    122
    123
    124
    125
    126
    127
    128
    129
    130
    131
    132
    133
    134
    135
    136
    137
    138
    139
    140
    141
    142
    143
    144
    145
    146
    147
    148
    149
    150
    151
    152
    153
    154
    
    #ifndef Stokes5_H
    #define Stokes5_H
    
    #define eta Stokes5_eta // rename functions
    #define u Stokes5_u
    #define v Stokes5_v
    
    // #include<stdio.h>
    // #include<math.h>
    #ifndef PI
    #define PI 3.14159265358979323846
    #endif
    
    
    
    typedef struct{
    /* Coefficients depending on wave and environmental properties */
      double A11, A22, A31, A33, A42, A44, A51, A53, A55,
      B22, B31, B42, B44, B53, B55,
      C0, C2, C4,
      D2, D4,
      E2, E4,
      S, eps, wave_length, wave_height, current, gravity, depth, k, kd, kH, c, cs, u_mean, Q, R,
      x0, y0;
    } Stokes5;
    
    
    /* Stokes 5th order waves based on Fenton's paper */
    
    void set_stokes5_properties(Stokes5 *stokes5, double wave_length, double wave_height, double current, double depth, double gravity, double x0, double y0)
    
    /* Compute coefficients based on wave properties and depth */
    {
    
      double eps, S, k, kd;
    
    
      // compute basic properties, dimensional numbers, and set attributes of stokes5  
      k = 2.*PI/wave_length;
      kd = k*depth;
      eps = k*wave_height/2.;
      S = 1./cosh(2.*kd);
    
      stokes5->k = k;
      stokes5->kd = kd;
      stokes5->wave_height = wave_height;
      stokes5->wave_length = wave_length;
      stokes5->current = current;
      stokes5->depth = depth;
      stokes5->gravity = gravity;
      stokes5->kH = k*wave_height;
      stokes5->eps = eps;
      stokes5->S = S;
      stokes5->x0 = x0;
      stokes5->y0 = y0;
    
      // compute coefficients
      stokes5->A11 = 1/sinh(kd);
      stokes5->A22 = 3*pow(S,2)/(2*pow(1-S,2));
      stokes5->A31 = (-4 -20*S + 10*pow(S,2) - 13*pow(S,3))/(8*sinh(kd)*pow(1-S,3));
      stokes5->A33 = (-2*pow(S,2) + 11*pow(S,3))/(8*sinh(kd)*pow(1-S,3));
      stokes5->A42 = (12*S - 14*pow(S,2) - 264*pow(S,3) - 45*pow(S,4) - 13*pow(S,5))/(24*pow(1-S,5));
      stokes5->A44 = (10*pow(S,3) - 174*pow(S,4) + 291*pow(S,5) + 278*pow(S,6))/(48*(3+2*S)*pow(1-S,5));
      stokes5->A51 = (-1184 + 32*S + 13232*pow(S,2) + 21712*pow(S,3) + 20940*pow(S,4) + 12554*pow(S,5) - 500*pow(S,6) - 3341*pow(S,7) - 670*pow(S,8))/(64*sinh(kd)*(3+2*S)*(4+S)*pow(1-S,6));
      stokes5->A53 = (4*S + 105*pow(S,2) + 198*pow(S,3) - 1376*pow(S,4) - 1302*pow(S,5) - 117*pow(S,6) + 58*pow(S,7))/(32*sinh(kd)*(3+2*S)*(pow(1-S,6)));
      stokes5->A55 = (-6*pow(S,3) + 272*pow(S,4) - 1552*pow(S,5) + 852*pow(S,6) + 2029*pow(S,7) + 430*pow(S,8))/(64*sinh(kd)*(3+2*S)*(4+S)*pow(1-S,6));
    
      stokes5->B22 = (cosh(kd)/sinh(kd))*(1+2*S)/(2*(1-S));
      stokes5->B31 = -3*(1 + 3*S + 3*pow(S,2) + 2*pow(S,3))/(8*pow(1-S,3));
      stokes5->B42 = (cosh(kd)/sinh(kd))*(6 - 26*S - 182*pow(S,2) - 204*pow(S,3) - 25*pow(S,4) + 26*pow(S,5))/(6*(3+2*S)*pow(1-S,4));
      stokes5->B44 = (cosh(kd)/sinh(kd))*(24 + 92*S + 122*pow(S,2) + 66*pow(S,3) + 67*pow(S,4) + 34*pow(S,5))/(24*(3+2*S)*pow(1-S,4));
      stokes5->B53 = 9*(132 + 17*S - 2216*pow(S,2) - 5897*pow(S,3) - 6292*pow(S,4) - 2687*pow(S,5) + 194*pow(S,6) + 467*pow(S,7) + 82*pow(S,8))/(128*(3+2*S)*(4+S)*pow(1-S,6));
      stokes5->B55 = 5*(300 + 1579*S + 3176*pow(S,2) + 2949*pow(S,3) + 1188*pow(S,4) + 675*pow(S,5) + 1326*pow(S,6) + 827*pow(S,7) + 130*pow(S,8))/(384*(3+2*S)*(4+S)*pow(1-S,6));
      stokes5->C0 = pow(tanh(kd),0.5);
      stokes5->C2 = pow(tanh(kd),0.5)*(2+7*pow(S,2))/(4*pow(1-S,2));
      stokes5->C4 = pow(tanh(kd),0.5)*(4 + 32*S - 116*pow(S,2) - 400*pow(S,3) - 71*pow(S,4) + 146*pow(S,5))/(32*pow(1-S,5));
      stokes5->D2 = -pow(cosh(kd)/sinh(kd),0.5)/2;
      stokes5->D4 = pow(cosh(kd)/sinh(kd),0.5)*(2 + 4*S + pow(S,2) + 2*pow(S,3))/(8*pow(1-S, 3));
      stokes5->E2 = tanh(kd)*(2 + 2*S + 5*pow(S,2))/(4*pow(1-S,2));
      stokes5->E4 = tanh(kd)*(8 + 12*S - 152*pow(S,2) - 308*pow(S,3) - 42*pow(S,4) + 77*pow(S,5))/(32*pow(1-S,5));
    
      stokes5->u_mean = (stokes5->C0 + pow(eps,2)*stokes5->C2 + pow(eps,4)*stokes5->C4)/sqrt(k/gravity);
      stokes5->c = stokes5->u_mean + stokes5->current; // wave celerity
      stokes5->Q = (stokes5->u_mean)*depth + (stokes5->D2*pow(eps,2) + stokes5->D4*pow(eps,4))/sqrt(pow(k,3)/gravity);
      stokes5->cs = stokes5->c - (stokes5->Q)/depth; // cs = Stokes drift (set the current to Q/d (Stokes drift=0) for closed wave tanks
      stokes5->R = 0.5*(gravity/k)*pow(stokes5->C0,2) + kd + (stokes5->E2)*pow(eps,2) + (stokes5->E4)*pow(eps,4); // Bernoulli constant
    
    }
    
    
    double eta(Stokes5 *stokes5, double t, double X)
    
    /* Given an initialized stokes wave (stokes5), compute the surface elevation eta at time t and coordinate X */
    {
      double keta, kx, eps;
      eps = stokes5->eps;
      kx = (stokes5->k)*(X - (stokes5->c)*t - (stokes5->x0));
      keta = stokes5->kd + eps*cos(kx) + 
                  pow(eps,2)*(stokes5->B22)*cos(2*kx) + 
                  pow(eps,3)*(stokes5->B31)*(cos(kx) - cos(3*kx)) + 
                  pow(eps,4)*((stokes5->B42)*cos(2*kx) + (stokes5->B44)*cos(4*kx)) + 
                  pow(eps,5)*(-((stokes5->B53) + (stokes5->B55))*cos(kx) + (stokes5->B53)*cos(3*kx) + (stokes5->B55)*cos(5*kx));
    
      return stokes5->y0 + keta/(stokes5->k) - stokes5->depth;
    }
    
    
    
    double u(Stokes5 *stokes5, double t, double X, double Y)
    
    /* Given an initialized stokes wave (stokes5), compute the horizontal velocity at time t and coordinate X, Y.  Values above the surface are computed uncritically. */
    {
    
      double k, kx, ky, eps;
      eps = stokes5->eps;
      k = stokes5->k;
      kx = (stokes5->k)*(X - (stokes5->c)*t - (stokes5->x0));
      ky = (stokes5->k)*(Y + stokes5->depth - (stokes5->y0));
    
      return stokes5->c - stokes5->u_mean + 
             (stokes5->C0)*sqrt((stokes5->gravity)/pow(k,3))*(pow(eps,1)*(1*k*(stokes5->A11)*cosh(1*ky)*cos(1*kx)) +
             pow(eps,2)*(2*k*(stokes5->A22)*cosh(2*ky)*cos(2*kx)) + 
             pow(eps,3)*(1*k*(stokes5->A31)*cosh(1*ky)*cos(1*kx) + 3*k*(stokes5->A33)*cosh(3*ky)*cos(3*kx)) + 
             pow(eps,4)*(2*k*(stokes5->A42)*cosh(2*ky)*cos(2*kx) + 4*k*(stokes5->A44)*cosh(4*ky)*cos(4*kx)) + 
             pow(eps,5)*(1*k*(stokes5->A51)*cosh(1*ky)*cos(1*kx) + 3*k*(stokes5->A53)*cosh(3*ky)*cos(3*kx) + 
             5*k*(stokes5->A55)*cosh(5*ky)*cos(5*kx)));
    }
    
    
    
    
    double v(Stokes5 *stokes5, double t, double X, double Y)
    
    /* Given an initialized stokes wave (stokes5), compute the vertical velocity at time t and coordinate X, Y.  Values above the surface are computed, but should later be set to zero. */
    {
    
      double k, kx, ky, eps;
      eps = stokes5->eps;
      k = stokes5->k;
      kx = (stokes5->k)*(X - (stokes5->c)*t - (stokes5->x0));
      ky = (stokes5->k)*(Y + stokes5->depth - (stokes5->y0));
    
      return (stokes5->C0)*sqrt((stokes5->gravity)/pow(k,3))*(pow(eps,1)*(1*k*(stokes5->A11)*sinh(1*ky)*sin(1*kx)) +
             pow(eps,2)*(2*k*(stokes5->A22)*sinh(2*ky)*sin(2*kx)) + 
             pow(eps,3)*(1*k*(stokes5->A31)*sinh(1*ky)*sin(1*kx) + 3*k*(stokes5->A33)*sinh(3*ky)*sin(3*kx)) + 
             pow(eps,4)*(2*k*(stokes5->A42)*sinh(2*ky)*sin(2*kx) + 4*k*(stokes5->A44)*sinh(4*ky)*sin(4*kx)) + 
             pow(eps,5)*(1*k*(stokes5->A51)*sinh(1*ky)*sin(1*kx) + 3*k*(stokes5->A53)*sinh(3*ky)*sin(3*kx) + 
             5*k*(stokes5->A55)*sinh(5*ky)*sin(5*kx)));
    }
    
    
    
    
    #endif