sandbox/YiDai/round_wall.c

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79
    80
    81
    82
    83
    84
    85
    86
    87
    88
    89
    90
    91
    92
    93
    94
    95
    96
    97
    98
    99
    100
    101
    102
    103
    104
    105
    106
    107
    108
    109
    110
    111
    112
    113
    114
    115
    116
    117
    118
    119
    120
    121
    122
    123
    124
    125
    126
    127
    128
    129
    130
    131
    132
    133
    134
    135
    136
    137
    138
    139
    140
    141
    142
    143
    144
    145
    146
    147
    148
    149
    150
    151
    152
    153
    154
    155
    156
    157
    158
    159
    160
    161
    162
    163
    164
    165
    166
    167
    168
    169
    170
    171
    172
    173
    174
    175
    176
    177
    178
    179
    180
    181
    182
    183
    184
    185
    186
    187
    188
    189
    190
    191
    192
    193
    194
    195
    196
    197
    198
    199
    200
    201
    202
    203
    204
    205
    206
    207
    208
    209
    210
    211
    212
    213
    214
    215
    216
    217
    218
    219
    220
    
    #include "grid/octree.h" 		// For 3D
    #include "view.h"			// For bview
    #include "navier-stokes/centered.h"     // Navier stokes 
    // #include "tracer.h"			// Tracers
    // #include "diffusion.h"			// Diffusion 
    
    #include "embed.h"
    #include "PointTriangle.h"
    
    /** Global variables */
    int minlevel, maxlevel;         	// Grid depths
    double meps, eps;			// Maximum error and error in u fields
    
    double TEND = 15;
    double H = 5, W = 80, D = 2; //Height (y), width (z) and `depth`(x)
    double xp = 200, zp = 200;
    
    #define CP 1005.	// C_p for air 
    #define gCONST 9.81	// Gravitational constant
    #define TREF 273.	// Kelvin
    #define INVERSION .3 	// Kelvin per meter
    #define karman 0.4      // von Karman constant 
    
    #define roughY0u 0.1    // roughness wind length 
    #define roughY0h 0.1     // roughness heat length
    
    #define WIND(s) (max(0.1*log(s/roughY0u),0.))   // log Wind profile 
    // #define QFLX 0. 	// 0 (0.001 = 20wm2)
    // #define BSURF (1.5*b[] - 0.5*b[0, 1])
    // #define GFLX (-Lambda*(BSURF - bd))
    // double Lambda = 0.005, bd = 0.;   // Grass coupling
    // #define STRAT(s) gCONST/TREF*s*INVERSION
    
    // scalar b[];
    // scalar * tracers = {b};
    
    double crho = 1.;	
    // face vector av[]; 
    
    // #include "physics.h"			// Physics of the simulation 
    // #include "fan.h"			// Include a fan
    #include "lambda2.h"
    
    face vector muc[];
    double nu;
    
    int main() {	
        nu = 1./300.;
        minlevel = 4;
        maxlevel = 9;
    
        L0 = 400.;
        X0 = Y0 = Z0 = 0.;
        mu = muc;
    
        init_grid(1<<8);
        // a = av; 
        // meps = 10.;					// Maximum adaptivity criterion
        // DT = 0.5;					// For poisson solver 
        // TOLERANCE=10E-4;				// For poisson solver 
        // CFL = 0.8;					// CFL condition
        run();						// Start simulation 
    }
    
    event init(t=0) {
        eps = .05;
    
    	  // u.n[bottom] = dirichlet(0.);
    	  // u.t[bottom] = dirichlet(0.);
    	  // u.n[top] = dirichlet(0.);
    	  // u.t[top] = dirichlet(WIND(y));
        // u.n[embed] = dirichlet(0.);
        // u.t[embed] = dirichlet(0.);
        // periodic (left);
        // #if dimension == 3
        //     u.r[embed] = dirichlet(0.);
        //     periodic(front);
        // #endif 
    
        u.n[left]  = dirichlet(WIND(y));
        p[left]    = neumann(0.);
        pf[left]   = neumann(0.);
    
        u.n[right] = neumann(0.);
        p[right]   = dirichlet(0.);
        pf[right]  = dirichlet(0.);
    
        u.n[embed] = dirichlet(0.);
        u.t[embed] = dirichlet(0.);
        #if dimension == 3
            u.r[embed] = dirichlet(0.);
            // periodic(back);
        #endif
    
    
        vertex scalar phw[];
        D /= 2.;
        H -= D/2;
        W -= W/2;
        foreach_vertex() {
            coord cc = {x, y, z};
            if ((z - zp) > W/2) { // distance to a side edge
            coord p1 = {xp, Y0, zp + W/2.}, p2 = {xp, Y0 + H, zp + W/2.};
            coord tmp1[1]; double tmp2[1];
            phw[] = sqrt (PointSegmentDistance (&cc, &p1, &p2, tmp1, tmp2));
            }
            else if ((z - zp) < -W/2) {
            coord p1 = {xp, Y0, zp - W/2.}, p2 = {xp, Y0 + H, zp - W/2.};
            coord tmp1[1]; double tmp2[1];
            phw[] = sqrt (PointSegmentDistance (&cc, &p1, &p2, tmp1, tmp2));
            }
            else if (y - Y0 > H) {
            coord p1 = {xp, Y0 + H, zp - W/2.}, p2 = {xp, Y0 + H, zp + W/2.};
            coord tmp1[1]; double tmp2[1];
            phw[] = sqrt (PointSegmentDistance (&cc, &p1, &p2, tmp1, tmp2));
            }
            else
            phw[] = fabs(cc.x - xp);
        }
        fractions (phw, cs, fs, D);
        boundary ({cs, fs});
        foreach()
          u.x[] = cs[] ? WIND(y) : 0.;
        // while(adapt_wavelet((scalar *){cs, u},(double []){0.01,eps,eps,eps},maxlevel,minlevel).nf) {
        //   foreach() {
        //       u.x[] = cs[]? WIND(y): 0.;
        //   }
        // }
    }
    
    event properties (i++) {
      foreach_face()
        muc.x[] = fm.x[]*nu; 
      boundary ((scalar*){muc});
    }
    
    // event inflow(i++){
    //     double sides = 50;
    //     double relaxtime = dt/50;
    //     foreach(){
    // 	if((x < sides || x > L0-sides) ||
    // 	   (z < sides || z > L0-sides) ||
    // 	   (y > L0-2*sides )) {
    // 	    double a = (x < sides) ? x : fabs(x-L0);
    // 	    a = 1.; 
    // 	    u.x[] = u.x[] + a*(WIND(y)-u.x[])*relaxtime;
    //  	    // b[] = b[] + a*(STRAT(y) - b[])*relaxtime;
    // 	    u.y[] = u.y[] - a*u.y[]*relaxtime;
    // 		  u.z[] = u.z[] - a*u.z[]*relaxtime;
    // 	}
    //     }
    // }
    
    // event tracer_diffusion(i++){
    //     scalar r[];
    //     foreach() {
    //         r[] = 0;
    //         if (y < Delta)
    //             r[] = (QFLX + GFLX)/sq(Delta); // div needed as normalization 
    //     }
    
    //     double flx = 0, bt = 0;
    //     double fctr = CP*TREF/gCONST;
    //     foreach_boundary(bottom reduction(+:flx) reduction(+:bt)) {
    //         flx = flx + (QFLX + GFLX) * sq(Delta);
    //          bt = bt + BSURF * sq(Delta);
    //     }
    //     bt = bt/sq(L0);
    //     flx = flx/sq(L0);
    //     fprintf(stderr, "soil=%g %g %g %d\n", t, fctr*flx, fctr*bt/CP, i);  
    
    //     mgb = diffusion(b, dt, mu, r = r);
    // }
    
    event adapt(i++) {
        adapt_wavelet((scalar *){cs,u},(double []){0.01,eps,eps,eps},maxlevel,minlevel);
    }
    
    event progress(i++) {
        fprintf (stderr, "%d %g %d %d\n", i, t, mgp.i, mgu.i);
    }
    
    event mov (t += 0.5) {
    #if (dimension == 2)
      scalar omega[];
      vorticity (u, omega);
      boundary ({omega});
      // draw_vof ("cs", "fs", filled = -1, fc = {0,0,0});
      // draw_vof ("cs", "fs");
      squares ("omega", linear = true, map = cool_warm);
      mirror ({0,-1})
      cells();
    #elif (dimension == 3)
      scalar l2[], vyz[];
      foreach()
        vyz[] = ((u.y[0,0,1] - u.y[0,0,-1]) - (u.z[0,1] - u.z[0,-1]))/(2.*Delta);
      boundary ({vyz});
      lambda2 (u, l2);
      view (fov = 30, theta = 0.5, phi = 0.4, 
    	tx = -0.1, ty = 0.1, bg = {65./256,157./256,217./256},
    	width = 1080, height = 1080);
      box();
      draw_vof ("cs", "fs", fc = {0.5,0.1,0.2});
      draw_vof ("cs", "fs");
      isosurface ("l2", -0.01);
      translate (y = -5){
        squares ("u.x", n = {0,1,0}, alpha = 5.,
    	     min = -1.2, max = 2, map = cool_warm);}
      // translate (z = -L0/2.){
      //   squares ("b", n = {0,0,1}, alpha = L0/2.,
    	//      min = -0.1, max = 0.6, map = cool_warm);}
      // translate (x = -L0/2.){
      //   squares ("b", n = {1,0,0}, alpha = L0/2.,
    	//      min = -0.1, max = 0.6, map = cool_warm);}
    #endif
      save ("lam_3D.mp4");
    }
    
    event end(t=TEND) {
    }