sandbox/M1EMN/Exemples/MLSWbumpF1.c

    Interactive flow

    Supercritical and subcritical flow over a bump in a thin layer flow.

    Code

    We use the Multilayer solver

    #include "grid/cartesian1D.h"
    #include "saint-venant.h" 
    
    double tmax,Fr,hout;
    double alpha;
    scalar tau[],delta1[],delta2[];
    FILE * fq;

    position of domain X0=0, length L0, no dimension G=1 run with 64 points. We define hout from the analytical solution, it will be usefull for the boundary condition. Note that the velocity is Fr the Froude number. The Reynolds is Re=500 (\nu=0.001 and Fr=0.5)

    int main() {
      
      double web=1;
      X0 = 0;
      L0 = 1.-X0;
      G = 1;
      N = 128*2/web;
      tmax=5; 
      nu=0.0025;
      nl = 200;
    
      Fr=0.5;
      alpha=0.09/web;   
      hout = 1+1.73*sqrt(L0*nu/Fr)*(Fr*Fr)/(Fr*Fr-1);
      run();
      system("cp   xproff.txt xproffSUB.txt");
         
      Fr=1.5;
      alpha=0.04/web;
      hout = 1+1.73*sqrt(L0*nu/Fr)*(Fr*Fr)/(Fr*Fr-1);
      run();
      system("cp   xproff.txt xproffSUP.txt");
    
    
    }

    Initialisation, we initialize h and hc.
    We define a scalar field hc to check for convergence on h.

    scalar hc[];
    
    event init (i = 0)
    {
      foreach(){
        zb[] = 0  ;
        delta1[]=1.7*sqrt(x*nu/Fr);
        h[] = hc[] = 1+(delta1[]+zb[])*(Fr*Fr)/(Fr*Fr-1); 
       }
       boundary({zb,h,hc});
    
     for (vector u in ul) {
      foreach()
      u.x[] =Fr*(1+(delta1[]+zb[])/(1-Fr*Fr));
    
     }

    Boundary condtion, neumann for h and impose flux and a Rieman invariant $u - 2 * $ is constant around h=1 neumann for u and impose the height from the analytical linearized solution for Fr<1. But for Fr>1, given values at the entrance and neumann at the exit.

      h[left]   = (Fr<1? neumann(0) : dirichlet(1));
      eta[left] = (Fr<1? neumann(0) : dirichlet(1));
     
      for (vector u in ul) {
        u.n[left] = dirichlet(h[left] ? Fr /h[left] : 0.)  - (2*sqrt(G*h[]) -  2*sqrt(G*1.))*(Fr<1);  
        u.n[right] = neumann(0.);
      }
     eta[right] = (Fr<1?  dirichlet(hout) : neumann(0)); 
    }

    Compute friction:

    event friction (i++) {

    smooth update of the bump

       foreach()
         zb[] = 0 + alpha*exp(-800*sq(x-L0/2))*(1-exp(-t/10.));

    Poiseuille friction: implicit scheme (time splitting, here commented) \displaystyle \frac{\partial u}{\partial t} = - C_f \frac{u}{h^2} hence, if implicited for u, explicited for h: \displaystyle u^{n+1} = u^n -C_f \Delta t \frac{u^{n+1}}{(h^{n})^2}

     if(nl==1){ 
      foreach()
      {    double ff = h[] < dry ? HUGE : (1. +   3*nu*dt/h[]/h[]);
        u.x[] /= ff;
        }
    
       foreach()
        tau[]=3*u.x[]/(h[]); 
      }

    Multilayer case, the derivative is twice the value in the first layer,

    else{
      vector u0 = ul[0];
      foreach()
        tau[]=2*u0.x[]/(h[]/nl);
       }
    }

    We check for convergence.

    event logfile (t += 0.1; i <= 75000) {
    	
    /*
    	FILE *f; 
    	f = fopen("F1.IN", "r"); 
    fscanf(f,"alpha=%lf     \n",&alpha); 
    fclose(f); */
    
    	//alpha = .11*(1-exp(-t/10));
    	//foreach()     zb[] = 0 + alpha*exp(-800*sq(x-L0/2));
    
      double dh = change (h, hc);
      fprintf (stderr,"coucou t= %g  -- var=  %g, Re = %lf alpha = %lf\n", t, dh,  Fr/nu, alpha);
      if (i > 0 && dh < 10e-5)
        return 1;

    } And save fields

    event sauv (t<=tmax;t+=.1) {

     foreach() { 
          double z = zb[],psi=0;
          vector ue;
          ue=ul[nl-1];
          int l = 0;
          z -= (layer[0]/2)*h[];
          for (vector uz in ul) {
      z += (layer[l++])*h[];
      psi += (1-uz.x[]/ue.x[])*(layer[l])*h[];
          }
      delta1[]=  psi; 
    }
    
     vector ue;
     ue=ul[nl-1];
     
     FILE *fq =  fopen("xproff.txt","w");  
     foreach() { 
          fprintf(fq,"%g %g %g %g %g %g %g %g %g\n", x, h[], tau[], ue.x[],t,Fr,nu,delta1[],zb[]);}
      fprintf(fq," \n");
    
      fflush(fq);
      fclose(fq);
    }

    Run

    To compile and run :

       qcc -O2  -o MLSWbumpF1  MLSWbumpF1.c  -lm;  ./MLSWbumpF1

    using Makefile

      make MLSWbumpF1.tst
      make MLSWbumpF1/plots
      make MLSWbumpF1.c.html 

    Plots

    Supercritical flow

    Note upstream influence (perturbation before the bump) and boundary layer separation before the bump.

    Shape of the bump, friction divided by gauge of Blasius friction \tau /Fr/(.32 \sqrt{Re}), reduced Blasius friction 1/\sqrt{x}

     set xlabel "x"
     p[:][:4]'xproffSUP.txt'u 1:($9/.04) t'bump' w lp ,'' u 1:($3/sqrt(600)/.32/1.5) t'tau comp' w lp,1/sqrt(x) t 'tau Balsius'
    (script)

    (script)

    Shape of the bump, displacement thickness divided by gauge of Blasius displacement \delta_1/(1.7 \sqrt{Re}), reduced Blasius displacement thickness \sqrt{x}.

     set xlabel "x"
     p[:][:2]'xproffSUP.txt'u 1:($9/.04) t'bump' w lp ,'' u 1:($8*sqrt(600))/1.7 t'delta_1',sqrt(x) t'delta_1 Blasius',''u 1:4 t'ue' w l,'' u 1:(1.5*(1-$8/(1.5*1.5-1))) t 'lin' w l
    (script)

    (script)

    Subcritical flow

    Note no upstream influence (perturbation appear at the bump foot), boundary layer separation is after the bump.

    Shape of the bump, friction divided by gauge of Blasius friction \tau /Fr/(.32 \sqrt{Re}), reduced Blasius friction 1/\sqrt{x}

     set xlabel "x"
     p[:][:5]'xproffSUB.txt'u 1:($9/.1) t'bump' w lp ,\
     '' u 1:($3/sqrt(200)/.32/.5) t'tau comp' w lp,1/sqrt(x) t 'tau Blasius'
     #p[:][:4]'xproffSUB.txt'u 1:($9/.1)  t'bump' w lp ,'' u 1:($8*sqrt(100))/1.7 t'delta_1',sqrt(x) t'delta_1 Blasius',''u 1:4 t'ue' w l,'' u 1:(.5*(1-$8/(.5*.5-1))) t 'lin' w l
    (script)

    (script)

    Shape of the bump, displacement thickness divided by gauge of Blasius displacement \delta_1/(1.7 \sqrt{Re}), reduced Blasius displacement thickness \sqrt{x}.

     set xlabel "x"
     p[:][:2]'xproffSUB.txt'u 1:($9/.1) t'bump' w lp ,'' u 1:($8*sqrt(200))/1.7 t'delta_1',\
     sqrt(x) t'delta_1 Blasius',''u 1:4 t'ue' w l,'' u 1:(.5*(1-$8/(.5*.5-1))) t 'lin' w l
    (script)

    (script)

    Bibliography