sandbox/Antoonvh/gradient-sharpening.c

    Gradient sharpening by a dipolar vortex

    A dipolar vortex propages itself through a modest scalar gradient. hereby the scalar gradients sharply increase at the edge of the dipole’s atmosphere.

    The results are presented and discussed in a publication:

    A note on scalar-gradient sharpening in the stable atmospheric boundary layer

    https://doi.org/10.1007/s10546-020-00516-x

    Set-up

    We solve the Navier-stokes equations and a tracer advection-diffusion equation.

    #include "navier-stokes/centered.h"
    #include "tracer.h"
    #include "diffusion.h"
    #include "view.h"
    
    scalar s[], *tracers = {s};
    
    double Re = 800;
    double Pr = 1.;
    int maxlevel = 99; //Unlimited
    FILE * fp;
    double se = 0.02, ue = 0.02;

    The equations of motion are solved in the frame of reference that is co-moving with the initialized dipolar vortex. As such, in and outflow conditions are set at the left and right wall, respectively.

    u.n[left] = neumann (0.);
    p[left]   = neumann (0.);
    pf[left]  = neumann (0.);
    
    u.n[right] = dirichlet (-1.);
    p[right]   = dirichlet (0.);
    pf[right]  = dirichlet (0.);
    the dimensional constraints below are not compatible
    s[right] = dirichlet (tanh((x - 5. + t)/2.));
    
    int main () {
      L0 = 25;
      X0 = Y0 = -L0/2;
      N  = 512;
      TOLERANCE = 1e-5;
      NITERMIN = 2;
      foreach_dimension()
        u.x.refine = refine_linear;

    Uncomment the following line for a sweep op Re values and the other two for a convergence study. Here we only run Re = 800 and se = ue = 0.02.

      //for (Re = 50; Re <= 3200; Re *= 2)
        //for (ue = 0.03; ue >= 0.01; ue -= 0.01)
        //for (se = 0.03; se >= 0.01; se /= 0.01)
      run();
    }

    Initialization

    We initalize the Lamb-Chaplygin dipolar vortex and the initally modest scalar front.

    double xo = -0.01, yo = 0.1;
    #define RAD (sqrt(sq(x - xo) + sq(y - yo)))
    #define ST ((yo - y)/RAD)
    event init (t = 0) {
      char fname[99];
      sprintf (fname, "datac%g,%g%g", Re, se, ue);
      fp = fopen (fname, "w");
      scalar psi[];
      psi[left]  = dirichlet ((1/RAD - RAD)*ST);
      psi[right] = dirichlet ((1/RAD - RAD)*ST);
      psi[top]  = dirichlet ((1/RAD - RAD)*ST);
      psi[bottom] = dirichlet ((1/RAD - RAD)*ST);
      const face vector nu[] = {1./Re, 1./Re};
      mu = nu;
      double k = 3.83170597;
      refine (RAD < 2. && level < 10);
      refine (RAD < 1.1 && level < 11);
      foreach() 
        psi[] = ((RAD > 1)*(1/RAD - RAD)*ST +
    	     (RAD <= 1)*(-2*j1(k*RAD)*ST/(k*j0(k))));
      boundary ({psi});
      foreach() {
        u.x[] = -((psi[0, 1] - psi[0, -1])/(2*Delta));
        u.y[] = (psi[1, 0] - psi[-1, 0])/(2*Delta);
        s[] = tanh((x - 5)/2);
      }
      boundary ({s, u});
    }

    The tracer field is subject to diffusion.

    event tracer_diffusion (i++) {
      const face vector kappa[] = {1./(Pr*Re), 1./(Pr*Re)};
      diffusion (s, dt, kappa);
    }

    We use an adaptive grid:

    event adapt (i++) {
      int minlevel = 6;
      adapt_wavelet ({s, u}, (double[]){se, ue, ue}, 99, minlevel);
      unrefine (x > X0 + 14*L0/15 && level > minlevel - 1);
    }
    
    event output (t += 0.1) {
      scalar lev[], gr[], omega[];
      face vector grf[];
      vertex scalar sv[];
      double maxgr = 0;
      boundary({s});
      foreach_face() {
        if (fabs(x - X0) < Delta/2. || fabs(x - X0 - L0) < Delta/2. ||
    	fabs(y - Y0) < Delta/2. || fabs(y - Y0 - L0) < Delta/2.)
          grf.x[] = 0;
        else
          grf.x[] = (15.*(s[] - s[-1]) - (s[1] - s[-2]))/(12.*Delta);
      }
      boundary ((scalar*){grf});
      foreach_vertex() 
        sv[] = (s[] + s[-1] + s[0,-1] + s[-1,-1])/4.;
      foreach() {
        lev[] = level;
        gr[] = 0;
        foreach_dimension()
          // gr[] += sq((s[1] - s[-1])/(2.*Delta)); //sconder order diagnosis
          gr[] += sq((grf.x[] + grf.x[1])/2.); 
        if (gr[] > sq(maxgr))
          maxgr = sqrt(gr[]);
      }
      vorticity (u, omega);
      boundary ({gr, omega, sv});
      fprintf (fp, "%g %d %g %g %d %ld %g \n",
    	   t, i, maxgr, statsf(gr).sum, grid->maxdepth, grid->n, perf.t);
      fflush (fp);
      printf ("%g %d %d %d %g %g %d\n",
    	  t, i, mgp.i, mgpf.i, maxgr, statsf(gr).sum, depth());

    For Re = 800, a movie is generated.

      if (Re == 800) {
        view (fov = 25, width = 1200, height = 700);
        translate (x = t - 5) {
          squares ("omega",  linear = true, map = cool_warm, min = -8, max = 8);
          for (double sval = -0.8 ; sval <= 0.8; sval += 0.4)
    	isoline ("sv", sval, lw = 2);
          //cells();
          save ("Re800-overview.mp4");
        }
        view (fov = 4, width = 1200, height = 700);
        squares ("gr", linear = true, min = 0, max = 40, map = cool_warm);
        cells();
        save ("Re800-grid.mp4");
      }
    }
    
    event stop (t = 15) {
      char dname[99];
      sprintf (dname, "dump%g", Re);
      dump (dname);
      fclose (fp);
    }