/** # Transcritical flow over a bump with multiple layers We want to reproduce the transcritical test case of [Audusse et al, 2011](/src/references.bib#audusse2011), section 5.6.2. */ #include "grid/cartesian1D.h" #include "saint-venant.h" /** We need a field to store the variable bottom friction. */ scalar lambda[]; /** The constant inflow flow rate (m^2/s). */ const double Q = 1.; /** The outlet water level. */ const double Ho = 0.6; int main() { X0 = 0.; L0 = 21. [1]; G = 9.81; N = 256; /** The viscosity is set to $\nu = 0.01 m^2/s$ and the bottom friction is variable. */ nu = 0.01; lambda_b = lambda; /** We vary the number of layers. */ nl = 2; run(); nl = 5; run(); nl = 15; run(); } /** We impose the outlet water level. */ h[right] = dirichlet (Ho); eta[right] = dirichlet (Ho); /** ## Initialisation We initialise the topography, the initial water depth *h* and we create a field *hc* to check convergence on *h*. */ scalar hc[]; event init (i = 0) { double a = 0.2, b = 5.75/2.; foreach() { zb[] = max(0., a*(1.[0] - sq((x - 10.)/b))); hc[] = h[] = Ho - zb[]; } /** ## Boundary conditions on velocity We impose a constant flow rate `Q` at the inlet and a Neumann condition at the outlet.*/ for (vector u in ul) { u.n[left] = dirichlet(h[left] ? Q/h[left] : 0.); u.n[right] = neumann(0.); } } /** ## Bottom friction We use the Strickler relation: $$ k(h,\mathbf{U}) = \frac{g}{S^2h^{1/3}}|\mathbf{U}| $$ with $S = 25 m^{1/3}/s$ the Strickler coefficient, $h$ the water depth and $\mathbf{U}$ the depth-averaged velocity. Note that we have to use a lower Strickler coefficient (i.e. larger friction) to get results comparable to those of [Audusse et al, 2011](/src/references.bib#audusse2011). */ event friction (i++) { foreach() { double U = 0.; int l = 0; for (vector u in ul) U += u.x[]*layer[l++]; double S = 25., k = G/(sq(S)*pow(h[],1./3.))*fabs(U); lambda[] = k > 0. ? nu/k : 0.; } } /** We check for convergence. */ event logfile (t += 0.1; i <= 100000) { double dh = change (h, hc); if (i > 0 && dh < 1e-4) return 1; } /** Uncomment this part if you want on-the-fly animation. */ #if 0 event output (i++) { static FILE * fp = popen ("gnuplot", "w"); fprintf (fp, "set title 'nl=%d, t=%f'\n" "set xl 'x'\nset yl 'h'\n" "plot [0:21][] '-' u 1:2 w l t 'eta', '-' u 1:3 w l t 'zb'\n", nl, t); foreach() fprintf (fp, "%g %g %g\n", x, eta[], zb[]); fprintf (fp, "e\n"); fflush (fp); } #endif /** ## Outputs At the end of the simulation we save the profiles. */ event output (t = end) { char name[80]; sprintf (name, "end-%d", nl); FILE * fp = nl == 15 ? stderr : fopen (name, "w"); foreach() { fprintf (fp, "%g %g %g\n", x, eta[], zb[]); if (nl == 15) { double z = zb[]; int l = 0; printf ("%g %g %g\n", x, z, u.x[]); for (vector u in ul) { z += layer[l++]*h[]; printf ("%g %g %g\n", x, z, u.x[]); } printf ("\n"); } } } /** ## Results ~~~gnuplot Free surface and topography. This can be compared to figure 9 of [Audusse et al, 2011](/src/references.bib#audusse2011). set xr [0:21] set yr [0:1] set xlabel 'x' set ylabel 'z' plot 'end-2' u 1:3 w l t 'topography', \ 'end-2' u 1:2 w l t '2 layers', \ 'end-5' u 1:2 w l t '5 layers', \ 'log' u 1:2 w l t '15 layers' ~~~ ~~~gnuplot Horizontal velocity field (15 layers). set term PNG enhanced font ",10" set output 'vel.png' set pm3d set pm3d map interpolate 10,1 unset key # jet colormap set palette defined ( 0 0 0 0.5647, 0.125 0 0.05882 1, 0.25 0 0.5647 1, \ 0.375 0.05882 1 0.9333, 0.5 0.5647 1 0.4392, 0.625 1 0.9333 0, 0.75 1 0.4392 0, \ 0.875 0.9333 0 0, 1 0.498 0 0 ) splot 'out' u 1:2:3 ~~~ ## See also * [Same test with Gerris](http://gerris.dalembert.upmc.fr/gerris/tests/tests/shock.html#layered) */