/** # A solver for the Saint-Venant equations
Note that the [multilayer solver](layered/hydro.h) provides the same functionality and should be prefered for most applications.
The [Saint-Venant equations](http://en.wikipedia.org/wiki/Shallow_water_equations) can be written in integral form as the hyperbolic system of conservation laws $$ \partial_t \int_{\Omega} \mathbf{q} d \Omega = \int_{\partial \Omega} \mathbf{f} ( \mathbf{q}) \cdot \mathbf{n}d \partial \Omega - \int_{\Omega} hg \nabla z_b $$ where $\Omega$ is a given subset of space, $\partial \Omega$ its boundary and $\mathbf{n}$ the unit normal vector on this boundary. For conservation of mass and momentum in the shallow-water context, $\Omega$ is a subset of bidimensional space and $\mathbf{q}$ and $\mathbf{f}$ are written $$ \mathbf{q} = \left(\begin{array}{c} h\\ hu_x\\ hu_y \end{array}\right), \;\;\;\;\;\; \mathbf{f} (\mathbf{q}) = \left(\begin{array}{cc} hu_x & hu_y\\ hu_x^2 + \frac{1}{2} gh^2 & hu_xu_y\\ hu_xu_y & hu_y^2 + \frac{1}{2} gh^2 \end{array}\right) $$ where $\mathbf{u}$ is the velocity vector, $h$ the water depth and $z_b$ the height of the topography. See also [Popinet, 2011](/src/references.bib#popinet2011) for a more detailed introduction. ## User variables and parameters The primary fields are the water depth $h$, the bathymetry $z_b$ and the flow speed $\mathbf{u}$. $\eta$ is the water level i.e. $z_b + h$. Note that the order of the declarations is important as $z_b$ needs to be refined before $h$ and $h$ before $\eta$. */ scalar zb[], h[], eta[]; vector u[]; /** The only physical parameter is the acceleration of gravity *G*. Cells are considered "dry" when the water depth is less than the *dry* parameter (this should not require tweaking). */ double G = 1.; double dry = 1e-10; /** By default there is only a single layer i.e. this is the classical Saint-Venant system above. This can be changed by setting *nl* to a different value. The extension of the Saint-Venant system to multiple layers is implemented in [multilayer.h](). */ #if !LAYERS int nl = 1; #endif #include "multilayer.h" /** ## Time-integration ### Setup Time integration will be done with a generic [predictor-corrector](predictor-corrector.h) scheme. */ #include "predictor-corrector.h" /** The generic time-integration scheme in *predictor-corrector.h* needs to know which fields are updated. The list will be constructed in the *defaults* event below. */ scalar * evolving = NULL; /** We need to overload the default *advance* function of the predictor-corrector scheme, because the evolving variables ($h$ and $\mathbf{u}$) are not the conserved variables $h$ and $h\mathbf{u}$. */ trace static void advance_saint_venant (scalar * output, scalar * input, scalar * updates, double dt) { // recover scalar and vector fields from lists scalar hi = input[0], ho = output[0], dh = updates[0]; vector * uol = (vector *) &output[1]; // new fields in ho[], uo[] foreach() { double hold = hi[]; ho[] = hold + dt*dh[]; eta[] = zb[] + ho[]; if (ho[] > dry) { for (int l = 0; l < nl; l++) { vector uo = vector(output[1 + dimension*l]); vector ui = vector(input[1 + dimension*l]), dhu = vector(updates[1 + dimension*l]); foreach_dimension() uo.x[] = (hold*ui.x[] + dt*dhu.x[])/ho[]; } /** In the case of [multiple layers](multilayer.h#viscous-friction-between-layers) we add the viscous friction between layers. */ if (nl > 1) vertical_viscosity (point, ho[], uol, dt); } else // dry for (int l = 0; l < nl; l++) { vector uo = vector(output[1 + dimension*l]); foreach_dimension() uo.x[] = 0.; } } } /** When using an adaptive discretisation (i.e. a tree)., we need to make sure that $\eta$ is maintained as $z_b + h$ whenever cells are refined or restricted. */ #if TREE static void refine_eta (Point point, scalar eta) { foreach_child() eta[] = zb[] + h[]; } static void restriction_eta (Point point, scalar eta) { eta[] = zb[] + h[]; } #endif /** ### Computing fluxes Various approximate Riemann solvers are defined in [riemann.h](). */ #include "riemann.h" trace double update_saint_venant (scalar * evolving, scalar * updates, double dtmax) { /** We first recover the currently evolving height and velocity (as set by the predictor-corrector scheme). */ scalar h = evolving[0], dh = updates[0]; vector u = vector(evolving[1]); /** *Fh* and *Fq* will contain the fluxes for $h$ and $h\mathbf{u}$ respectively and *S* is necessary to store the asymmetric topographic source term. */ face vector Fh[], S[]; tensor Fq[]; /** The gradients are stored in locally-allocated fields. First-order reconstruction is used for the gradient fields. */ vector gh[], geta[]; tensor gu[]; for (scalar s in {gh, geta, gu}) { s.gradient = zero; #if TREE s.prolongation = refine_linear; #endif } gradients ({h, eta, u}, {gh, geta, gu}); /** We go through each layer. */ for (int l = 0; l < nl; l++) { /** We recover the velocity field for the current layer and compute its gradient (for the first layer the gradient has already been computed above). */ vector u = vector (evolving[1 + dimension*l]); if (l > 0) gradients ((scalar *) {u}, (vector *) {gu}); /** The faces which are "wet" on at least one side are traversed. */ foreach_face (reduction (min:dtmax)) { double hi = h[], hn = h[-1]; if (hi > dry || hn > dry) { /** #### Left/right state reconstruction The gradients computed above are used to reconstruct the left and right states of the primary fields $h$, $\mathbf{u}$, $z_b$. The "interface" topography $z_{lr}$ is reconstructed using the hydrostatic reconstruction of [Audusse et al, 2004](/src/references.bib#audusse2004) */ double dx = Delta/2.; double zi = eta[] - hi; double zl = zi - dx*(geta.x[] - gh.x[]); double zn = eta[-1] - hn; double zr = zn + dx*(geta.x[-1] - gh.x[-1]); double zlr = max(zl, zr); double hl = hi - dx*gh.x[]; double up = u.x[] - dx*gu.x.x[]; double hp = max(0., hl + zl - zlr); double hr = hn + dx*gh.x[-1]; double um = u.x[-1] + dx*gu.x.x[-1]; double hm = max(0., hr + zr - zlr); /** #### Riemann solver We can now call one of the approximate Riemann solvers to get the fluxes. */ double fh, fu, fv; kurganov (hm, hp, um, up, Delta*cm[]/fm.x[], &fh, &fu, &dtmax); fv = (fh > 0. ? u.y[-1] + dx*gu.y.x[-1] : u.y[] - dx*gu.y.x[])*fh; /** #### Topographic source term In the case of adaptive refinement, care must be taken to ensure well-balancing at coarse/fine faces (see [notes/balanced.tm]()). */ #if TREE if (is_prolongation(cell)) { hi = coarse(h); zi = coarse(zb); } if (is_prolongation(neighbor(-1))) { hn = coarse(h,-1); zn = coarse(zb,-1); } #endif double sl = G/2.*(sq(hp) - sq(hl) + (hl + hi)*(zi - zl)); double sr = G/2.*(sq(hm) - sq(hr) + (hr + hn)*(zn - zr)); /** #### Flux update */ Fh.x[] = fm.x[]*fh; Fq.x.x[] = fm.x[]*(fu - sl); S.x[] = fm.x[]*(fu - sr); Fq.y.x[] = fm.x[]*fv; } else // dry Fh.x[] = 0., Fq.x.x[] = S.x[] = Fq.y.x[] = 0.; } /** #### Updates for evolving quantities We store the divergence of the fluxes in the update fields. Note that these are updates for $h$ and $h\mathbf{u}$ (not $\mathbf{u}$). */ vector dhu = vector(updates[1 + dimension*l]); foreach() { double dhl = layer[l]*(Fh.x[1,0] - Fh.x[] + Fh.y[0,1] - Fh.y[])/(cm[]*Delta); dh[] = - dhl + (l > 0 ? dh[] : 0.); foreach_dimension() dhu.x[] = (Fq.x.x[] + Fq.x.y[] - S.x[1,0] - Fq.x.y[0,1])/(cm[]*Delta); /** For [multiple layers](multilayer.h#fluxes-between-layers) we need to store the divergence in each layer. */ if (l < nl - 1) { scalar div = wl[l]; div[] = dhl; } /** We also need to add the metric terms. They can be written (see eq. (8) of [Popinet, 2011](references.bib#popinet2011)) $$ S_g = h \left(\begin{array}{c} 0\\ \frac{g}{2} h \partial_{\lambda} m_{\theta} + f_G u_y\\ \frac{g}{2} h \partial_{\theta} m_{\lambda} - f_G u_x \end{array}\right) $$ with $$ f_G = u_y \partial_{\lambda} m_{\theta} - u_x \partial_{\theta} m_{\lambda} $$ */ double dmdl = (fm.x[1,0] - fm.x[])/(cm[]*Delta); double dmdt = (fm.y[0,1] - fm.y[])/(cm[]*Delta); double fG = u.y[]*dmdl - u.x[]*dmdt; dhu.x[] += h[]*(G*h[]/2.*dmdl + fG*u.y[]); dhu.y[] += h[]*(G*h[]/2.*dmdt - fG*u.x[]); } } /** For [multiple layers](multilayer.h#fluxes-between-layers) we need to add fluxes between layers. */ if (nl > 1) vertical_fluxes ((vector *) &evolving[1], (vector *) &updates[1], wl, dh); return dtmax; } /** ## Initialisation and cleanup We use the main time loop (in the predictor-corrector scheme) to setup the initial defaults. */ event defaults (i = 0) { assert (ul == NULL && wl == NULL); assert (nl > 0); ul = vectors_append (ul, u); for (int l = 1; l < nl; l++) { scalar w = new scalar; vector u = new vector; foreach_dimension() u.x.l = l; w.l = l; ul = vectors_append (ul, u); wl = list_append (wl, w); } evolving = list_concat ({h}, (scalar *) ul); foreach() for (scalar s in evolving) s[] = 0.; /** By default, all the layers have the same relative thickness. */ layer = qmalloc (nl, double); for (int l = 0; l < nl; l++) layer[l] = 1./nl; /** We overload the default 'advance' and 'update' functions of the predictor-corrector scheme and setup the prolongation and restriction methods on trees. */ advance = advance_saint_venant; update = update_saint_venant; /** On trees we make sure that slope-limiting is also used for refinement and prolongation. The prolongation/restriction functions for $\eta$ are set and they depend on boundary conditions on $z_b$ and $h$. */ #if TREE for (scalar s in {h,zb,u,eta}) { s.refine = s.prolongation = refine_linear; s.restriction = restriction_volume_average; s.dirty = true; } eta.refine = refine_eta; eta.restriction = restriction_eta; eta.depends = list_copy ({zb,h}); eta.dirty = true; #endif /** We setup the default display. */ display ("squares (color = 'h > 0 ? eta : nodata', spread = -1);"); } /** The event below will happen after all the other initial events to take into account user-defined field initialisations. */ event init (i = 0) { foreach() { eta[] = zb[] + h[]; dimensional (h[] == Delta); dimensional (u.x[] == Delta/DT); } } /** At the end of the simulation, we free the memory allocated in the *defaults* event. */ event cleanup (i = end, last) { free (evolving); free (layer); free (ul), ul = NULL; free (wl), wl = NULL; } /** # "Radiation" boundary conditions This can be used to implement open boundary conditions at low [Froude numbers](http://en.wikipedia.org/wiki/Froude_number). The idea is to set the velocity normal to the boundary so that the water level relaxes towards its desired value (*ref*). */ #define radiation(ref) (sqrt (G*max(h[],0.)) - sqrt(G*max((ref) - zb[], 0.))) #include "elevation.h" #include "gauges.h"