/** # Runge--Kutta time integrators */ static double update (scalar * ul, scalar * kl, double t, double dt, void (* Lu) (scalar * ul, double t, scalar * kl), scalar * dul, double w) { scalar * u1l = list_clone (ul); foreach() { scalar u1, u, k; for (u1,u,k in u1l,ul,kl) u1[] = u[] + dt*k[]; } Lu (u1l, t + dt, kl); foreach() { scalar du, k; for (du,k in dul,kl) du[] += w*k[]; } delete (u1l), free (u1l); return w; } /** The *runge_kutta()* function implements the classical first- (Euler), second- and fourth-order Runge--Kutta time integrators for evolution equations of the form $$ \frac{\partial\mathbf{u}}{\partial t} = L(\mathbf{u}, t) $$ with $\mathbf{u}$ a vector (i.e. list) of evolving fields and $L()$ a generic, user-defined operator. Given $\mathbf{u}$, the initial time *t*, a timestep *dt* and the function $L()$ which should fill *kl* with the right-hand-side of the evolution equation, the function below will return $\mathbf{u}$ at time $t + dt$ using the Runge--Kutta scheme specified by *order*. */ void runge_kutta (scalar * ul, double t, double dt, void (* Lu) (scalar * ul, double t, scalar * kl), int order) { scalar * dul = list_clone (ul); scalar * kl = list_clone (ul); Lu (ul, t, kl); foreach() { scalar du, k; for (du,k in dul,kl) du[] = k[]; } double w = 1.; switch (order) { case 1: // Euler break; case 2: w += update (ul, kl, t, dt, Lu, dul, 1.); break; case 4: w += update (ul, kl, t, dt/2., Lu, dul, 2.); w += update (ul, kl, t, dt/2., Lu, dul, 2.); w += update (ul, kl, t, dt, Lu, dul, 1.); break; default: assert (false); // not implemented } foreach() { scalar u, du; for (u,du in ul,dul) u[] += dt/w*du[]; } delete (dul), free (dul); delete (kl), free (kl); }