/** # The Mie--Gruneisen Equation of State This EOS is typically used in combination with the [two-phase compressible solver](/src/compressible/two-phase.h). The general form of the [Mie--Gruneisen](https://en.wikipedia.org/wiki/Mie%E2%80%93Gr%C3%BCneisen_equation_of_state) EOS can be written $$ \rho_i e_i = \frac{p_i + \Gamma_i \Pi_i}{\Gamma_i - 1} $$ with $\rho_i$, $e_i$ and $p_i$ the densities, internal energies and pressures of each phase. These are the coefficients of the Mie-Gruneisen EOS for each phase. */ double gamma1 = 1.4 [0], gamma2 = 1.4 [0], PI1 = 0., PI2 = 0.; /** ## Sound speed In mixture cells, this function returns the maximum between the speeds in both phases. */ double sound_speed (Point point) { double fc = clamp (f[],0.,1.); double c2speed1 = 0., c2speed2 = 0.; double Ek = 0.; foreach_dimension() Ek += sq(q.x[]); Ek /= 2.*(frho1[] + frho2[]); if (fc > 0.00001) { double fe1 = fE1[] - fc*Ek; double p = fe1/fc*(gamma1 - 1.) - gamma1*PI1; c2speed1 = fc*gamma1*(p + PI1)/frho1[]; } if (fc < 0.99999) { double fe2 = fE2[] - (1. - fc)*Ek; double p = fe2/(1. - fc)*(gamma2 - 1.) - gamma2*PI2; c2speed2 = (1. - fc)*gamma2*(p + PI2)/frho2[]; } return sqrt (max (c2speed1, c2speed2)); } /** ## Average pressure */ #define PIGAMMA double invgammaavg = fc/(gamma1 - 1.) + (1. - fc)/(gamma2 - 1.), \ PIGAMMAavg = fc*PI1*gamma1/(gamma1 - 1.) + (1. - fc)*PI2*gamma2/(gamma2 - 1.) double average_pressure (Point point) { double fc = clamp (f[],0.,1.); PIGAMMA; double Ek = 0.; foreach_dimension() Ek += sq(q.x[]); Ek /= 2.*(frho1[] + frho2[]); return (fE1[] + fE2[] - Ek - PIGAMMAavg)/invgammaavg; } /** ## Bulk compressibility of the mixture i.e. $\rho c^2$. */ double bulk_compressibility (Point point) { double fc = clamp (f[],0.,1.); PIGAMMA; return (p[]*(invgammaavg + 1.) + PIGAMMAavg)/invgammaavg; } /** ## Internal energy */ double internal_energy (Point point, double fc) { PIGAMMA; return p[]*invgammaavg + PIGAMMAavg; }