/** # Two-phase interfacial flows This is a modified version of [two-phase.h](http://basilisk.fr/src/two-phase.h). It contains the implementation of Viscoplastic Fluid (Bingham Fluid).
This file helps setup simulations for flows of two fluids separated by an interface (i.e. immiscible fluids). It is typically used in combination with a [Navier--Stokes solver](http://basilisk.fr/src/navier-stokes/centered.h). The interface between the fluids is tracked with a Volume-Of-Fluid method. The volume fraction in fluid 1 is $f=1$ and $f=0$ in fluid 2. The densities and dynamic viscosities for fluid 1 and 2 are *rho1*, *mu1*, *rho2*, *mu2*, respectively. */ #include "vof.h" scalar f[], * interfaces = {f}; double rho1 = 1., mu1 = 0., rho2 = 1., mu2 = 0.; double mumax = 0., tauy = 0.; /** Auxilliary fields are necessary to define the (variable) specific volume $\alpha=1/\rho$ as well as the cell-centered density. */ face vector alphav[]; scalar rhov[]; event defaults (i = 0) { alpha = alphav; rho = rhov; /** If the viscosity is non-zero, we need to allocate the face-centered viscosity field. */ if (mu1 || mu2) mu = new face vector; } /** The density and viscosity are defined using arithmetic averages by default. The user can overload these definitions to use other types of averages (i.e. harmonic). */ #ifndef RHO # define RHO(f) (clamp(f,0.,1.)*(rho1 - rho2) + rho2) #endif #ifndef MU # define MU(muTemp, mu2, f) (clamp(f,0.,1.)*(muTemp - mu2) + mu2) #endif /** We have the option of using some "smearing" of the density/viscosity jump. */ #ifdef FILTERED scalar sf[]; #else # define sf f #endif event properties (i++) { /** When using smearing of the density jump, we initialise *sf* with the vertex-average of *f*. */ #ifndef sf #if dimension <= 2 foreach() sf[] = (4.*f[] + 2.*(f[0,1] + f[0,-1] + f[1,0] + f[-1,0]) + f[-1,-1] + f[1,-1] + f[1,1] + f[-1,1])/16.; #else // dimension == 3 foreach() sf[] = (8.*f[] + 4.*(f[-1] + f[1] + f[0,1] + f[0,-1] + f[0,0,1] + f[0,0,-1]) + 2.*(f[-1,1] + f[-1,0,1] + f[-1,0,-1] + f[-1,-1] + f[0,1,1] + f[0,1,-1] + f[0,-1,1] + f[0,-1,-1] + f[1,1] + f[1,0,1] + f[1,-1] + f[1,0,-1]) + f[1,-1,1] + f[-1,1,1] + f[-1,1,-1] + f[1,1,1] + f[1,1,-1] + f[-1,-1,-1] + f[1,-1,-1] + f[-1,-1,1])/64.; #endif #endif #if TREE sf.prolongation = refine_bilinear; boundary ({sf}); #endif /** This is part where we have made changes. $$D_{11} = \frac{\partial u}{\partial x}$$ $$D_{12} = \frac{1}{2}\left( \frac{\partial u}{\partial y}+ \frac{\partial v}{\partial x}\right)$$ $$D_{21} = \frac{1}{2}\left( \frac{\partial u}{\partial y}+ \frac{\partial v}{\partial x}\right)$$ $$D_{22} = \frac{\partial v}{\partial y}$$ The second invariant is $D_2=\sqrt{D_{ij}D_{ij}}$ (this is the Frobenius norm) $$D_2^2= D_{ij}D_{ij}= D_{11}D_{11} + D_{12}D_{21} + D_{21}D_{12} + D_{22}D_{22}$$ the equivalent viscosity is $$\mu_{eq}= \mu_0\left(\frac{D_2}{\sqrt{2}}\right)^{N-1} + \frac{\tau_y}{\sqrt{2} D_2 }$$ **Note:** $\|D\| = D_2/\sqrt{2}$.
For Bingham Fluid, N = 1: $$\mu_{eq}= \mu_0 + \frac{\tau_y}{\sqrt{2} D_2 }$$ Finally, mu is the min of of $\mu_{eq}$ and a large $\mu_{max}$. The fluid flows always, it is not a solid, but a very viscous fluid. $$ \mu = min\left(\mu_{eq}, \mu_{\text{max}}\right) $$ */ double muTemp = mu1; foreach_face() { double ff = (sf[] + sf[-1])/2.; alphav.x[] = fm.x[]/RHO(ff); if (mu1 || mu2) { face vector muv = mu; double D11 = (u.x[] - u.x[-1,0]); double D22 = ((u.y[0,1]-u.y[0,-1])+(u.y[-1,1]-u.y[-1,-1]))/4.0; double D12 = 0.5*(((u.x[0,1]-u.x[0,-1])+(u.x[-1,1]-u.x[-1,-1]))/4.0 + (u.y[] - u.y[-1,0])); double D2 = sqrt(sq(D11)+sq(D22)+2.0*sq(D12))/(Delta); if (D2 > 0. && tauy > 0.) { double temp = tauy/(sqrt(2.0)*D2) + mu1; muTemp = min(temp, mumax); } else { if (tauy > 0.){ muTemp = mumax; } else { muTemp = mu1; } } /** Note that only the heavier fluid is Viscoplastic. */ muv.x[] = fm.x[]*MU(muTemp, mu2, ff); } } foreach() rhov[] = cm[]*RHO(sf[]); #if TREE sf.prolongation = fraction_refine; boundary ({sf}); #endif }