/** # Flow past a rapidly pitching NACA0015 airfoil at $Re=10000$ This test case is inspired from the numerical work of [Visbal et Shang., 1989](#Visbal1989). We reproduce here the results of [Schneiders et al., 2013](#Schneiders2013). The authors studied the laminar flow around a rapidly pitching NACA0015 airfoil using a adaptive grid where the smallest mesh size is equivalent to *2000pt/c* (c is the NACA0015 airfoil chord length). We solve here the Navier-Stokes equations and add the NACA0015 using an [embedded boundary](/src/embed.h). */ #include "grid/quadtree.h" #include "../myembed.h" #include "../mycentered.h" #include "../myembed-moving.h" #include "../myperfs.h" #include "view.h" /** ## Reference solution */ #define chord (1.) // NACA0015 chord length #define Re (10000.) // Reynolds number based on the cord length #define p_w0 (0.6) // Pitch rate #define p_t0 (1.) // Pitch characteristic time #define p_ts (0.2) // Pitch start time #define uref (1.) // Reference velocity, uref #define tref (min ((p_t0), (chord)/(uref))) // Reference time, tref /** We define the NACA0015 airfoil's pitch pitching rate and shape. */ #define p_angle(t,ts,tau,w) ((t) < (ts) ? 0 : \ (w)*(((t) - (ts)) + (tau)/4.6*(exp(-4.6*((t) - (ts))/(tau)) - 1.))) // NACA0015 pitch angle #define p_rotation(t,ts,tau,w) ((t) < (ts) ? 0 : \ (w)*(1. - exp(-4.6*((t) - (ts))/(tau)))) // NACA0015 pitch rotation rate #define p_acceleration(t,ts,tau,w) ((t) < (ts) ? 0 : \ (w)*4.6/(tau)*exp(-4.6*((t) - (ts))/(tau))) // NACA0015 pitch rotation rate /** We also define the shape of the domain. */ #define naca00xx(x,y,a) (sq (y) - sq (5.*(a)*(0.2969*sqrt ((x)) \ - 0.1260*((x)) \ - 0.3516*sq ((x)) \ + 0.2843*cube ((x)) \ - 0.1036*pow ((x), 4.)))) // -0.1015 or -0.1036 void p_shape (scalar c, face vector f, coord p) { // NACA0015 parameters double tt = 0.15; // Rotation parameters around the position p, // located at the position cc in the airfoil referential double theta = (p_angle (t + dt, (p_ts), (p_t0), (p_w0))); coord cc = {0.25*(chord), 0.}; vertex scalar phi[]; foreach_vertex() { // Coordinates with respect to the center of rotation of the airfoil p // where the head of the airfoil is identified as xrot = 0, yrot = 0 double xrot = cc.x + (x - p.x)*cos (theta) - (y - p.y)*sin (theta); double yrot = cc.y + (x - p.x)*sin (theta) + (y - p.y)*cos (theta); if (xrot >= 0. && xrot <= (chord)) { // Camber line coordinates, adimensional double xc = xrot/(chord), yc = yrot/(chord), thetac = 0.; // Thickness phi[] = (naca00xx (xc, yc, tt*cos (thetac))); } else phi[] = 1.; } boundary ({phi}); fractions (phi, c, f); fractions_cleanup (c, f, smin = 1.e-14, cmin = 1.e-14); } /** ## Setup We need a field for viscosity so that the embedded boundary metric can be taken into account. */ face vector muv[]; /** We define the mesh adaptation parameters. */ #define lmin (8) // Min mesh refinement level (l=8 is 4pt/c) #define lmax (15) // Max mesh refinement level (l=15 is 512pt/c) #define cmax (1.e-3*(uref)) // Absolute refinement criteria for the velocity field int main () { /** The domain is $64\times 64$. */ L0 = 64.; size (L0); origin (-L0/2., -L0/2.); /** We set the maximum timestep. */ DT = 1.e-2*(tref); /** We set the tolerance of the Poisson solver. */ TOLERANCE = 1.e-4; TOLERANCE_MU = 1.e-4*(uref); /** We initialize the grid. */ N = 1 << (lmin); init_grid (N); run (); } /** ## Boundary conditions We use inlet boundary conditions. */ u.n[left] = dirichlet ((uref)); u.t[left] = dirichlet (0); p[left] = neumann (0); pf[left] = neumann (0); u.n[right] = neumann (0); u.t[right] = neumann (0); p[right] = dirichlet (0); pf[right] = dirichlet (0); /** We give boundary conditions for the face velocity to "potentially" improve the convergence of the multigrid Poisson solver. */ uf.n[left] = (uref); uf.n[bottom] = 0; uf.n[top] = 0; /** ## Properties */ event properties (i++) { foreach_face() muv.x[] = (uref)*(chord)/(Re)*fm.x[]; boundary ((scalar *) {muv}); } /** ## Initial conditions */ event init (i = 0) { /** We set the viscosity field in the event *properties*. */ mu = muv; /** We use "third-order" [face flux interpolation](/src/embed.h). */ #if ORDER2 for (scalar s in {u, p, pf}) s.third = false; #else for (scalar s in {u, p, pf}) s.third = true; #endif // ORDER2 /** We use a slope-limiter to reduce the errors made in small-cells. */ #if SLOPELIMITER for (scalar s in {u, p, pf}) { s.gradient = minmod2; } #endif // SLOPELIMITER #if TREE /** When using *TREE* and in the presence of embedded boundaries, we should also define the gradient of *u* at the cell center of cut-cells. */ #endif // TREE /** We initialize the embedded boundary. */ /** As the angle of the NACA0015 profile depends on the timestep *dt*, we also initialize *dt* to avoid using an arbitrary large *dt* to initialize the embedded boundaries. */ dt = DT; #if TREE /** When using *TREE*, we refine the mesh around the embedded boundary. */ astats ss; int ic = 0; do { ic++; p_shape (cs, fs, p_p); ss = adapt_wavelet ({cs}, (double[]) {1.e-30}, maxlevel = (lmax), minlevel = (1)); } while ((ss.nf || ss.nc) && ic < 100); #endif // TREE p_shape (cs, fs, p_p); /** We initialize the particle's speed and accelerating. */ p_w.x = -(p_rotation (0., (p_ts), (p_t0), (p_w0))); p_w.y = p_w.x; p_aw.x = -(p_acceleration (0., (p_ts), (p_t0), (p_w0))); p_aw.y = p_aw.x; /** We initialize the velocity. */ foreach() u.x[] = cs[]*(uref); boundary ((scalar *) {u}); } /** ## Embedded boundaries The particle's position is advanced to time $t + \Delta t$. */ event advection_term (i++) { p_aw.x = -(p_acceleration (t + dt, (p_ts), (p_t0), (p_w0))); p_aw.y = p_aw.x; p_w.x = -(p_rotation (t + dt, (p_ts), (p_t0), (p_w0))); p_w.y = p_w.x; } /** ## Adaptive mesh refinement */ #if TREE event adapt (i++) { adapt_wavelet ({cs,u}, (double[]) {1.e-2,(cmax),(cmax)}, maxlevel = (lmax), minlevel = (1)); /** We do not need here to reset the embedded fractions to avoid interpolation errors on the geometry as the is already done when moving the embedded boundaries. It might be necessary to do this however if surface forces are computed around the embedded boundaries. */ } #endif // TREE /** ## Outputs */ event logfile (i++; t <= (p_ts) + 1.85*(p_t0)) { coord Fp, Fmu; embed_force (p, u, mu, &Fp, &Fmu); double CD = (Fp.x + Fmu.x)/(0.5*sq ((uref))*(chord)); double CL = (Fp.y + Fmu.y)/(0.5*sq ((uref))*(chord)); fprintf (stderr, "%d %g %g %d %d %d %d %d %d %g %g %g %g %g %g %g\n", i, (t - (p_ts))/(p_t0), dt/(p_t0), mgp.i, mgp.nrelax, mgp.minlevel, mgu.i, mgu.nrelax, mgu.minlevel, mgp.resb, mgp.resa, mgu.resb, mgu.resa, (p_angle(t, (p_ts), (p_t0), (p_w0)))/M_PI*180., CD, CL); fflush (stderr); } /** ## Surface pressure coefficient and vorticity We compute here the distribution of the pressure coefficient $C_p$ and vorticity $\omega$ at the surface of the NACA0015 airfoil when it reaches the pitch angles $\theta = 44,\, 55$ approximately. */ void cpout (FILE * fp) { foreach(serial) if (cs[] > 0. && cs[] < 1.) { coord b, n; embed_geometry (point, &b, &n); double xe = x + b.x*Delta, ye = y + b.y*Delta; double theta = (p_angle(t, (p_ts), (p_t0), (p_w0))); coord cc = {0.25*(chord)}; double xcord = cc.x + (xe - p_p.x)*cos (theta) - (ye - p_p.y)*sin (theta); fprintf (fp, "%g %g %g %g\n", xcord, // 1 M_PI + atan2(ye - p_p.y, xe - p_p.x), // 2 embed_interpolate (point, p, b), // 3 embed_vorticity (point, u, b, n) // 4 ); fflush (fp); } } event surface_profile (t = {(p_ts) + 1.4971*(p_t0), (p_ts) + 1.8172*(p_t0)}) { int angle = ((p_angle (t, (p_ts), (p_t0), (p_w0)))/M_PI*180.); char name[80]; sprintf (name, "cp-angle-%d-pid-%d", angle, pid()); FILE * fp = fopen (name, "w"); cpout (fp); fclose (fp); } /** ## Snapshots We plot here the vorticity isolines when the NACA0015 airfoil reaches the pitch angles $\theta = 44,\, 55$ approximately to compare them with fig. 18 and 19 of [Schneiders et al., 2013](#Schneiders2013). */ event snapshot (t = {0., (p_ts) + 1.4971*(p_t0), (p_ts) + 1.8172*(p_t0)}) { int angle = ((p_angle (t, (p_ts), (p_t0), (p_w0)))/M_PI*180.); scalar omega[]; vorticity (u, omega); char name2[80]; /** We first plot the entire domain. */ view (fov = 20, camera = "front", tx = 0., ty = 1.e-12, bg = {1,1,1}, width = 800, height = 800); draw_vof ("cs", "fs", lw = 5); cells (); sprintf (name2, "mesh-angle-%d.png", angle); save (name2); draw_vof ("cs", "fs", filled = -1, lw = 5); squares ("u.x", map = cool_warm); sprintf (name2, "ux-angle-%d.png", angle); save (name2); draw_vof ("cs", "fs", filled = -1, lw = 5); squares ("u.y", map = cool_warm); sprintf (name2, "uy-angle-%d.png", angle); save (name2); draw_vof ("cs", "fs", filled = -1, lw = 5); squares ("p", map = cool_warm); sprintf (name2, "p-angle-%d.png", angle); save (name2); draw_vof ("cs", "fs", filled = -1, lw = 5); squares ("omega", map = cool_warm); sprintf (name2, "omega-angle-%d.png", angle); save (name2); /** We then zoom on the particle. */ view (fov = 0.4, camera = "front", tx = -(p_p.x + 0.2)/L0, ty = -(p_p.y - 0.1)/L0, bg = {1,1,1}, width = 800, height = 800); draw_vof ("cs", "fs", lw = 5); cells (); sprintf (name2, "mesh-zoom-angle-%d.png", angle); save (name2); draw_vof ("cs", "fs", lw = 5); squares ("u.x", map = cool_warm); sprintf (name2, "ux-zoom-angle-%d.png", angle); save (name2); draw_vof ("cs", "fs", lw = 5); squares ("u.y", map = cool_warm); sprintf (name2, "uy-zoom-angle-%d.png", angle); save (name2); draw_vof ("cs", "fs", filled = -1, lw = 5); squares ("p", map = cool_warm); sprintf (name2, "p-zoom-angle-%d.png", angle); save (name2); draw_vof ("cs", "fs", filled = -1, lw = 5); squares ("omega", map = cool_warm, min = -100, max = 100); sprintf (name2, "omega-zoom-angle-%d.png", angle); save (name2); } /** ## Results #### Vorticity We compare here the vorticity isolines with those of fig. 18 and 19 from [Schneiders et al., 2013](#Schneiders2013), obtained when the NACA0015 airfoil reaches the pitch angles $\theta = 44,\, 55$. ![fig. 18 from [Schneiders al., 2013](#Schneiders2013)](data/Schneiders2013/Schneiders2013-fig18.png) ![Vorticity isolines for $\theta = 44$](naca0015-pitching/omega-zoom-angle-44.png) ![fig. 19 from [Schneiders al., 2013](#Schneiders2013)](data//Schneiders2013/Schneiders2013-fig19.png) ![Vorticity isolines for $\theta = 55$](naca0015-pitching/omega-zoom-angle-54.png) #### Drag and lift coefficients We next plot the drag and lift coefficents $C_D$ and $C_L$ as a function of the pitch angle $\theta$. We compare the results with those of fig. 17 from [Schneiders et al., 2013](#Schneiders2013). ~~~gnuplot Drag and lift coefficients $C_D$ and $C_L$ as a function of the angle $\theta$ set terminal svg font ",16" set key top right spacing 1.1 set xtics 0,10,100 set xlabel 'theta' set ylabel 'C_{D,L}' set xrange[0:55] set yrange[0:6] plot '../data/Schneiders2013/Schneiders2013-fig17-CD.csv' u 1:2 w p ps 0.7 pt 7 lc rgb "black" \ t "fig. 17, Schneiders et al., 2013, C_D", \ '../data/Schneiders2013/Schneiders2013-fig17-CL.csv' u 1:2 w p ps 0.7 pt 5 lc rgb "black" \ t "fig. 17, Schneiders et al., 2013, C_L", \ 'log' u 14:15 w l lw 1.5 lc rgb "blue" t "Basilisk, C_D", \ '' u 14:16 w l lw 1.5 lc rgb "red" t "Basilisk, C_L" ~~~ #### Surface pressure coefficient $C_p$ around the NACA0015 airfoil We finally plot the distribution of the pressure coefficient $C_p$ at the surface of the NACA0015 airfoil when it reaches the pitch angles $\theta = 44,\, 55$ approximately. ~~~gnuplot Pressure coefficient $C_p$ at $\theta = \left\{44,55\right\}$ set xtics 0,0.5,1 set xlabel 'x/c' set ylabel 'C_p' set xrange[0:1] set yrange[-8:5] plot '< cat cp-angle-44-pid-* | sort -k2,2' u 1:3 w p pt 7 ps 0.7 lc rgb "black" \ t "theta = 44", \ '< cat cp-angle-54-pid-* | sort -k2,2' u 1:3 w p pt 5 ps 0.7 lc rgb "blue" \ t "theta = 55" ~~~ ## References ~~~bib @article{Visbal1989, title={Investigation of the flow structure around a rapidly pitching airfoil}, author={Visbal, M.R. and Shang, J.S.}, journal={AIAA Journal}, volume={27}, pages={1044--1051}, year={1989}, publisher={AIAA} } @article{Schneiders2013, title={An accurate moving boundary formulation in cut-cell methods}, author={Schneiders, L. and Hartmann, D. and Meinke, M. and Schroder, W.}, journal={Journal of Computational Physics}, volume={235}, pages={786--809}, year={2013}, publisher={Elsevier} } ~~~ */