/** # Non-Isothermal Evaporation of a n-Heptane Droplet In this test case we want to simulate the evaporation of a n-heptane droplet in nitrogen. The droplet is pure in a non isothermal environment. Therefore, we want to solve both the chemical species mass fractions and the temperature field. At the beginning of the simulation, the droplet is initialized at 363K, while the ambient temperature is 565K. The heat conduction from the environment heats up the liquid droplet increasing the vapor pressure value and, therefore, increasing the evaporation rate of the droplet. The interface temperature tends to a plateau, given by the interplay between the heat conduction from the environment and the evaporation process that cools down the interface. ![Evolution of the temperature field (left) and the n-heptane mass fraction (right)](c7pathak/movie.mp4)(height=400 width=900) */ /** ## Phase Change Setup We define the number of gas and liquid species in the domain, we filter the density field to reduce problems related with the strong density ratio. The interface temperature must be obtained from the root-finding procedure with the *fsolve()* function, using the GSL interface. The Antoine equation is used according to the thermodynamic equilibrium implemented in [Pathak et al., 2018](#pathak2018steady), which proposed this test case. */ #define NGS 2 #define NLS 1 #define FILTERED #define SOLVE_TEMPERATURE #define USE_GSL 0 #define USE_ANTOINE /** ## Simulation Setup We use the centered solver with the evaporation source term in the projection step. The extended velocity is obtained from the doubled pressure-velocity coupling. We use the evaporation model together with the multiomponent phase change mechanism. */ #include "axi.h" #include "navier-stokes/centered-evaporation.h" #include "navier-stokes/centered-doubled.h" #include "two-phase.h" #include "tension.h" #include "evaporation.h" #include "multicomponent.h" #include "view.h" /** ### Data for multicomponent model We define the data required by the multicomponent phase change mechanism, including the solution of the temperature field. The equilibrium constant *inKeq* is ignored when *USE_ANTOINE* or *USE_CLAPEYRON* is used. */ char* gas_species[NGS] = {"NC7H16", "N2"}; char* liq_species[NLS] = {"NC7H16"}; char* inert_species[1] = {"N2"}; double gas_start[NGS] = {0., 1.}; double liq_start[NLS] = {1.}; double inDmix1[NLS] = {0.}; double inDmix2[NGS] = {6.77e-7, 6.77e-7}; double inKeq[NLS] = {0.}; double lambda1 = 0.1121; double lambda2 = 0.04428; double dhev = 3.23e5; double cp1 = 2505.; double cp2 = 1053.; double TL0 = 363.; double TG0 = 563.; /** ### Boundary conditions Outflow boundary conditions are set at the top and right sides of the domain. */ u.n[top] = neumann (0.); u.t[top] = neumann (0.); p[top] = dirichlet (0.); uext.n[top] = neumann (0.); uext.t[top] = neumann (0.); pext[top] = dirichlet (0.); u.n[right] = neumann (0.); u.t[right] = neumann (0.); p[right] = dirichlet (0.); uext.n[right] = neumann (0.); uext.t[right] = neumann (0.); pext[right] = dirichlet (0.); /** ### Simulation Data We declare the maximum and minimum levels of refinement, the initial radius and diameter, and the radius from the numerical simulation. */ int maxlevel, minlevel = 2; double D0 = 5.e-6, effective_radius0; int main (void) { /** We set the material properties of the fluids. The properties correspond to the n-heptane/nitrogen system at 28.6 bar. */ rho1 = 626.7; rho2 = 17.51; mu1 = 1.e-3; mu2 = 1.e-5; Pref = 2860000.; /** We change the dimension of the domain as a function of the initial diameter of the droplet. */ L0 = 2.*D0; /** We change the surface tension coefficient. and we decrease the tolerance of the Poisson solver. */ f.sigma = 0.01; TOLERANCE = 1.e-6; DT = 1.e-3; /** We run the simulation at different maximum levels of refinement. */ for (maxlevel = 6; maxlevel <= 6; maxlevel++) { init_grid (1 << maxlevel); run(); } } #define circle(x,y,R)(sq(R) - sq(x) - sq(y)) /** We initialize the volume fraction field and we compute the initial radius of the droplet. We don't use the value D0 because for small errors of initialization the squared diameter decay would not start from 1. */ event init (i = 0) { fraction (f, circle (x, y, 0.5*D0)); effective_radius0 = pow(3.*statsf(f).sum, 1./3.); /** We set the molecular weights of the chemial species involved in the simulation (by default inMW=1). */ inMW[0] = 100.2; inMW[1] = 29.; /** The proper Antoine equation function must be set to the attribute *antoine* of the liquid phase mass fraction fields. */ scalar YL = YLList[0]; YL.antoine = antoine_heptane; } /** We use the same boundary conditions used by [Pathak at al., 2018](#pathak2018steady). */ event bcs (i = 0) { scalar C7 = YGList[0]; scalar N2 = YGList[1]; C7[top] = dirichlet (0.); C7[right] = dirichlet (0.); N2[top] = dirichlet (1.); N2[right] = dirichlet (1.); TG[top] = dirichlet (TG0); TG[right] = dirichlet (TG0); } /** We adapt the grid according to the mass fractions of the mass fraction of n-heptane, the temperature, and the velocity field. */ event adapt (i++) { scalar C7 = YList[0]; adapt_wavelet_leave_interface ({C7,T,u.x,u.y}, {f}, (double[]){1.e-3,1.e-2,1.e-3,1.e-3,1.e-3}, maxlevel, minlevel, 1); } /** ## Post-Processing The following lines of code are for post-processing purposes. */ /** ### Output Files We write on a file the squared diameter decay and the dimensionless time. */ event output_data (i++) { char name[80]; sprintf (name, "OutputData-%d", maxlevel); static FILE * fp = fopen (name, "w"); scalar YInt_c7 = YGIntList[0]; scalar Y_c7 = YList[0]; double effective_radius = pow(3.*statsf(f).sum, 1./3.); double d_over_d02 = sq (effective_radius / effective_radius0); double TIntavg = avg_interface (TInt, f); double YIntavg = avg_interface (YInt_c7, f); double Tavg = avg_interface (T, f); double Yavg = avg_interface (Y_c7, f); fprintf (fp, "%g %g %g %g %g %g %g\n", t, effective_radius, d_over_d02, TIntavg, YIntavg, Tavg, Yavg); fflush (fp); } /** ### Temperature and Mass Fraction Profiles We write on a file the temperature and mass fraction profiles at different time instants. */ event profiles (t = {3.29e-6, 3.e-5, 1.05e-4, 1.5e-4}) { char name[80]; sprintf (name, "Profiles-%d", maxlevel); /** We create an array with the temperature and mass fraction profiles for each processor. */ scalar C7 = YList[0]; Array * arrtemps = array_new(); Array * arrmassf = array_new(); for (double x = 0.; x < L0; x += 0.5*L0/(1 << maxlevel)) { double valt = interpolate (T, x, 0.); double valm = interpolate (C7, x, 0.); valt = (valt == nodata) ? 0. : valt; valm = (valm == nodata) ? 0. : valm; array_append (arrtemps, &valt, sizeof(double)); array_append (arrmassf, &valm, sizeof(double)); } double * temps = (double *)arrtemps->p; double * massf = (double *)arrmassf->p; /** We sum each element of the arrays in every processor. */ @if _MPI int size = arrtemps->len/sizeof(double); MPI_Allreduce (MPI_IN_PLACE, temps, size, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD); MPI_Allreduce (MPI_IN_PLACE, massf, size, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD); @endif /** The master node writes the profiles on a file. */ if (pid() == 0) { static FILE * fpp = fopen (name, "w"); int count = 0; for (double x = 0.; x < L0; x += 0.5*L0/(1 << maxlevel)) { fprintf (fpp, "%g %g %g\n", x, temps[count], massf[count]); count++; } fprintf (fpp, "\n\n"); fflush (fpp); } array_free (arrtemps); array_free (arrmassf); } /** ### Movie We write the animation with the evolution of the n-heptane mass fraction, the interface position and the temperature field. */ event movie (t += 2.e-6; t <= 1.6e-4) { clear(); box(); view (ty = -0.5, width=1200.); draw_vof ("f"); squares ("NC7H16", min = 0., max = 1., linear = true); mirror ({1.,0.}) { draw_vof ("f"); squares ("T", min = statsf(T).min, max = TG0, linear = true); } save ("movie.mp4"); } /** ## Results The numerical results are compared with the results obtained by [Pathak et al., 2018](#pathak2018steady) using a radially symmetric model, integrated using an ODE solver. ~~~gnuplot Evolution of the squared diameter decay reset set xlabel "t [s]" set ylabel "(D/D_0)^2" set key top right set grid plot "../data/pathak-heptane-T563-diam.csv" w p ps 2 t "Pathank et al., 2018", \ "OutputData-6" u 1:3 w l lw 2 t "LEVEL 6" ~~~ ~~~gnuplot Evolution of the interface temperature reset set xlabel "t [s]" set ylabel "Interface Temperature [K]" set key bottom right set grid plot "../data/pathak-heptane-T563-temp.csv" w p ps 2 t "Pathank et al., 2018", \ "OutputData-6" u 1:4 w l lw 2 t "LEVEL 6" ~~~ ~~~gnuplot Evolution of the temperature profiles reset set xlabel "radius [m] x10^{6}" set ylabel "Temperature [K]" set key bottom right set grid plot "../data/pathak-heptane-T563-Tprofile-329e-6.csv" w p pt 8 lc 1 t "time = 3.29x10^{-6} s", \ "../data/pathak-heptane-T563-Tprofile-3e-5.csv" w p pt 8 lc 2 t "time = 3.00x10^{-5} s", \ "../data/pathak-heptane-T563-Tprofile-105e-4.csv" w p pt 8 lc 3 t "time = 1.05x10^{-4} s", \ "../data/pathak-heptane-T563-Tprofile-150e-4.csv" w p pt 8 lc 4 t "time = 1.50x10^{-4} s", \ "Profiles-6" index 0 u ($1*1e+6):2 w l lw 2 lc 1 notitle, \ "Profiles-6" index 1 u ($1*1e+6):2 w l lw 2 lc 2 notitle, \ "Profiles-6" index 2 u ($1*1e+6):2 w l lw 2 lc 3 notitle, \ "Profiles-6" index 3 u ($1*1e+6):2 w l lw 2 lc 4 notitle ~~~ ~~~gnuplot Evolution of the n-heptane mass fraction profiles reset set xlabel "radius [m] x10^{6}" set ylabel "Mass Fraction [-]" set key top right set grid plot "../data/pathak-heptane-T563-Yprofile-329e-6.csv" w p pt 8 lc 1 t "time = 3.29x10^{-6} s", \ "../data/pathak-heptane-T563-Yprofile-3e-5.csv" w p pt 8 lc 2 t "time = 3.00x10^{-5} s", \ "../data/pathak-heptane-T563-Yprofile-105e-4.csv" w p pt 8 lc 3 t "time = 1.05x10^{-4} s", \ "../data/pathak-heptane-T563-Yprofile-150e-4.csv" w p pt 8 lc 4 t "time = 1.50x10^{-4} s", \ "Profiles-6" index 0 u ($1*1e+6):3 w l lw 2 lc 1 notitle, \ "Profiles-6" index 1 u ($1*1e+6):3 w l lw 2 lc 2 notitle, \ "Profiles-6" index 2 u ($1*1e+6):3 w l lw 2 lc 3 notitle, \ "Profiles-6" index 3 u ($1*1e+6):3 w l lw 2 lc 4 notitle ~~~ ## References ~~~bib @article{pathak2018steady, title={Steady-state and transient solutions to drop evaporation in a finite domain: Alternative benchmarks to the d2 law}, author={Pathak, Ashish and Raessi, Mehdi}, journal={International Journal of Heat and Mass Transfer}, volume={127}, pages={1147--1158}, year={2018}, publisher={Elsevier} } ~~~ */