%{ A code that looks very much like [venturi.m]() but in 2D and without the domain mapping. At the left boundary we impose a horizontal jet flow, which difuses due to viscosity all the way to a Poiseuille flow at the outflow boundary. %} clear all; clf; format compact % parameters Re=100; % reynolds number Nx=100; % number of grid nodes in z Ny=50; %number of grid nodes in r Lx=2; % domain length Ly=1; % domain height % differentiation [d.x,d.xx,d.wx,x]=dif1D('fd',0,Lx,Nx,5); [d.y,d.yy,d.wy,y]=dif1D('cheb',0,1,Ny); [D,l,X,Y,Z,I,NN]=dif2D(d,x,y); % preparing boundary conditions NN=Nx*Ny; l.u=(1:NN)'; l.v=l.u+NN; l.p=l.v+NN; II=speye(3*NN); D.lap=D.yy+D.xx; neuploc=[l.ctl;l.ctr;l.ctr-Ny]; % where to impose the neumann condition on the pressure p0loc=2*Ny; % where to impose zero pressure dir=[l.left;l.top;l.bot]; % where to put Dirichley on u and w loc=[l.u(dir); l.v(dir); l.p(p0loc); ... l.u(l.right); ... l.v(l.right); ... l.p(neuploc)]; C=[II([l.u(dir);l.v(dir);l.p(p0loc)],:); ... % Dirichlet on u,v,and p D.x(l.right,:)*II(l.u,:); ... % Neuman on v at outflow D.x(l.right,:)*II(l.v,:); ... % Neumann on u at outflow D.lap(neuploc,:)/Re*II(l.v,:)-D.x(neuploc,:)*II(l.p,:)]; % neuman constraint on pressure % initial guess V=zeros(NN,1); U=exp(-((Y-Ly/2)/(Ly/8)).^2); P=-X/Re; P=P-P(p0loc); % pressure zero at p0loc q0=[U(:);V(:);P(:)]; % Newton iterations disp('Newton loop') q=q0; quit=0;count=0; while ~quit % the present solution and its derivatives U=q(l.u); V=q(l.v); P=q(l.p); Ux=D.x*U; Uy=D.y*U; Vx=D.x*V; Vy=D.y*V; Px=D.x*P; Py=D.y*P; %{ # The nonlinear function and the Jacobian This is the core of the code. The function for which we look for a root is $$ f(q)=f\begin{pmatrix} u\\v\\p \end{pmatrix} = \begin{pmatrix} -uu_x-vu_y-p_x+\Delta u/Re \\ -uv_x-vv_y-p_y+\Delta v/Re \\ u_x+v_y \end{pmatrix}=0 $$ with the Laplacian $\Delta=\partial_{xx}+\partial_{yy}$. For the Newton method we need the Jacobian, we do a small perturbation $$ f(q+\tilde{q})\approx f(q)+A\tilde{q} $$ with the Jacobian $$ A=\begin{pmatrix} -u\partial_x-u_x-v\partial_y+\Delta/Re& -u_y& -\partial_x\\ -v_x&-u\partial_x-v\partial_y-v_y+\Delta/Re& -\partial_y\\ \partial_x& \partial_y&0 \end{pmatrix} $$ %} % nonlinear function f=[-U.*Ux-V.*Uy+D.lap*U/Re-Px; ... -U.*Vx-V.*Vy+D.lap*V/Re-Py; ... Ux+Vy]; % Jacobian A=[-(spd(U)*D.x+spd(Ux)+spd(V)*D.y)+D.lap/Re, -spd(Uy), -D.x; ... -spd(Vx),-(spd(U)*D.x+spd(V)*D.y+spd(Vy))+D.lap/Re, -D.y; ... D.x, D.y, Z]; % Boundary conditions f(loc)=C*(q-q0); A(loc,:)=C; % plotting subplot 311; surf(X,Y,reshape(P-1,Ny,Nx)); view(2); shading interp; hold on sely=1:Ny; selx=1:6:Nx; ww=reshape(U,Ny,Nx); vv=reshape(V,Ny,Nx); quiver(X(sely,selx),Y(sely,selx),ww(sely,selx),vv(sely,selx),'k'); axis([0,Lx,0,1]); xlabel('z'); ylabel('r'); title('Pressure P'); grid off;hold off subplot 312; surf(X,Y,reshape(U,Ny,Nx)); view(2); shading interp; xlabel('x'); ylabel('y'); title('horizontal velocity U'); grid off subplot 313; surf(X,Y,reshape(V,Ny,Nx)); view(2); shading interp; xlabel('x'); ylabel('y'); title('vertical velocity V'); grid off drawnow % convergence test res=norm(f); disp([num2str(count) ' ' num2str(res)]); if count>50|res>1e5; disp('no convergence');break; end if res<1e-5; quit=1; disp('converged'); continue; end % Newton step q=q-A\f; count=count+1; end set(gcf,'paperpositionmode','auto') print('-dpng','-r80','jet_2D.png') %{ The screen output for the convergence: Newton loop 0 24.5262 1 3.0485 2 0.24814 3 0.00075455 4 7.4988e-10 converged And the figure, where we see that there are two recirculating bubbles above and below the jet: ![The figure](jet_2D.png) %}