%{ # The Hiemenz boundary layer This is a particular case of a Falkner-Skan boundary layer corresponding to $\beta=1$, that is the boundary layer arround a stagnation point. In this case, there is a easy solution ofthe Pohlhausen profile that we use as an initial guess for Newton and as a comparison for the final result. See [blasius.m]() and [falkner_skan.m]() for other details. We use the polynomial closure at order 4, so that $$\frac{u(\eta)}{\bar u_e}=(2 \eta - 2 \eta^3 +\eta^4) + \frac{1}{6}\Lambda (\eta- 3 \eta^2 + 3 \eta^3 -\eta^4)$$ with $\Lambda= \delta^2 d\bar u_e/d\bar x$ in the Hiemenz case $\bar u_e=\bar x$ then $\Lambda= \delta^2$, The Von K\'arm\'an equation $$ \frac{d}{d \bar x} (\bar u_e^2\tilde \delta_{2}) + {\tilde \delta_{1}} {\bar u_e} \frac{d \bar u_{e}}{d \bar x} = \frac{u'(0)}{\tilde \delta} \bar u_{e}, \;\;\mbox{ reads }\;\; 2 \tilde \delta_{2} + {\tilde \delta_{1}} = \frac{u'(0)}{\tilde \delta }, $$ which is an equation were $\delta_1/\delta=(36 -\Lambda)/120$ and $\delta_2/\delta= 37/315 - \Lambda/945 - (\Lambda^2)/9072,$ and $u'(0) = (2 + \Lambda/6)$ and remember that $\Lambda= \delta^2$, we then substitute in VK: $$ \delta \left(\frac{3}{10}-\frac{\delta^2}{120}\right)-\frac{\frac{\delta^2}{6}+2}{\delta}+2 \delta \left(-\frac{\delta^4}{9072}-\frac{\delta^2}{945}+\frac{37}{315}\right)=0$$ we solve and find numericaly $\delta=2.65562$ this gives $\Lambda=7.05$ and $\delta_1=0.640617$, and $H=2.30809$ and $\tau= \frac{u'(0)}{\tilde \delta }=1.1957$ **Dependency** * [chebdif.m]() %} clear all; clf; %setenv("GNUTERM","X11") % parameters L=10; % box height N=100; % number of gridpoints beta=1; % pressure gradient parameter %{ For the differentiation matrices, since we as well need the third derivative, we build directly the matrices from [chebdif.m]() as in [diffmat.m]() instead of using the function [dif1D.m](). %} % differentiation matrices scale=-2/L; [y,DM] = chebdif(N,3); dy=DM(:,:,1)*scale; dyy=DM(:,:,2)*scale^2; dyyy=DM(:,:,3)*scale^3; y=(y-1)/scale; I=eye(N); Z=zeros(N,N); % initial guess from order 4 Pohlhausen profile d99=2.65562; lambda=d99^2; eta=y/d99; deta=dy*d99; % rescaled vertical coordinate u0=1-(1-eta).^3.*(1+(1-lambda/6)*eta); u0(eta>1)=1; A=deta; A(1,:)=I(1,:); u0(1)=0; % set up integration g0=A\u0; % compute integral sol=g0; % Newton iterations quit=0;count=0; while ~quit % the present solution g=sol; gy=dy*g; gyy=dyy*g; gyyy=dyyy*g; %{ # The FS equation Here is the nonlinear equation that we wish to solve $$ 0=g_{yyy}+gg_{yy} + \beta (1 - g_y^2) $$ and the analytical Jacobian is $$ A=\partial_{yyy}+g\partial_{yy}+g_{yy}I -2 \beta g_y \partial_{y} $$ %} % nonlinear function f=gyyy+g.*gyy+beta*(1-gy.^2); % analytical jacobian A=dyyy+diag(g)*dyy+diag(gyy)-2*beta*diag(gy)*dy; %{ # Boundary conditions The boundary conditions are homogeneous Dirichlet and Neuman at the wall and Neuman 1 at the top. The constraint matrix for the boundary conditions is thus $$ C=\left(\begin{array}{c} I|_0\\ \partial_y|_0\\ \partial_y|_L \end{array}\right) $$ so that the homogeneous and nonhomogeneous boundary conditions are expressed $$ Cg=\left(\begin{array}{c} 0\\ 0\\ 1 \end{array}\right) $$ %} % Boundary conditions loc=[1,2,N]; C=[I(1,:); dy(1,:); dy(N,:)]; f(loc)=C*g-[0;0;1]; A(loc,:)=C; % convergence test res=norm(f); disp([num2str(count) ' ' num2str(res)]); if count>50|res>1e5; disp('no convergence'); break; end if res<1e-5; quit=1; disp('converged'); continue; end % Newton step sol=sol-A\f; count=count+1; end %{ To recover the velocity profile from $g$ is $$ u=g_y $$ %} % the solution u=dy*g; % Compute the displacement thickness and normalize it to unity INT=([diff(y)',0]+[0,diff(y)'])/2; % integration weights mt=INT*(1-u); % Showing the result plot(u,y,'b-',u0,y,'r--'); xlabel('u'); ylabel('y'); ylim([0,y(end)]); title('Falkner-skan boundary layer'); legend('Falkner-Skan','Polhausen'); grid on set(gcf,'paperpositionmode','auto'); print('-dpng','-r80','hiemenz.png'); % Compute the displacement thickness w=([diff(y)',0]+[0,diff(y)'])/2; % integration weights d1num=w*(1-u) d1pol=(36-lambda)/120*d99 shearnum=gyy(1) shearpol=(2+lambda/6)/d99 %{ # Result and Plot The Hiemenz flow $f''' + ff'' + (1 - f'^2)=0$ as solution $f''(0)=1.2325$ (compare to 1.1957 for Pohlhausen4), the displacement thickness is $\int (1-f')d \eta=0.6479$ (compare to 0.640617 for Pohlhausen4). ![The velocity profile](/sandbox/easystab/hiemenz.png) # Links * the Blasius solution [blasius.m]() $\beta=0$ * the Falkner Skan solution [falkner_skan.m]() for one value of $\beta<0$ (with separation) * the Hiemenz solution [hiemenz.m]() for $\beta=1$ * the Falkner Skan solution [falkner_skan_continuation.m]() for all the $\beta$ # Exercices/Contributions * Please check that the axi Hiemenz flow $f''' + 2 ff'' + (1 - f'^2)=0$ as solution $f''(0)=1.31194$ (in 2D 1.2325), the displacement thickness is $\int (1-f')d \eta=0.568902$ (compare to 0.6479 in 2D). * Please check the convergent case $\beta \rightarrow \infty$ so $f'''+1-f'^2=0.$ $f''_0=1.15,$ and $\int_0^\infty (1-f')d\eta=0.779 $ # Bibliography see [blasius.m]() %}