%{ # Free-surface: displaying the eigenmodes using particles In this code, we take the code that computes the eigenmodes for free surface waves [free_surface_gravity.m]() and we visualize the flow motion of the first eigenmode by expanding the solution to physical space and advecting tracer particles, like we did in a simple case in [particles.m](). %} clear all; clf; n=100; % number of gridpoints alpha=1; % wavenumber in x L=2; % Fluid height in y rho=1; % fluid density mu=0.0001; % fuid viscosity g=1; % gravity % differentiation matrices scale=-2/L; [y,DM] = chebdif(n,2); D=DM(:,:,1)*scale; DD=DM(:,:,2)*scale^2; y=(y-1)/scale; I=eye(n); Z=zeros(n,n); % renaming the matrices dy=D; dyy=DD; dx=i*alpha*I; dxx=-alpha^2*I; Delta=dxx+dyy; % System matrices A=[mu*Delta, Z, -dx, Z(:,1); ... Z, mu*Delta, -dy, Z(:,1); ... dx, dy, Z, Z(:,1); ... Z(1,:),I(n,:),Z(1,:),0]; E=blkdiag(rho*I,rho*I,Z,1); % boundary conditions loc=[1,n,n+1,2*n]; C=[I(1,:),Z(1,:),Z(1,:),0; ... Z(1,:),I(1,:),Z(1,:),0; ... Z(1,:),Z(1,:),-I(n,:),rho*g; ... dy(n,:),dx(n,:),Z(1,:),0]; E(loc,:)=0; A(loc,:)=C; % compute eigenmodes [U,S]=eig(A,E); s=diag(S); [t,o]=sort(-real(s)); s=s(o); U=U(:,o); rem=abs(s)>1000; s(rem)=[]; U(:,rem)=[]; %{ # The animation We show the position of the free surface stored in *q(eta)*, and the particles are initialy set as a mesh, and stretched in *y* to fit with the initial position of the free surface for the top prticles. %} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % particle animation of the eigenmodes %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % parameters nper=1 % number of periods of oscillation nt=30 % number of time steps per period nx=40 % number of points in x modesel=2; % which more do animate % select the eigenmode u=1:n; v=u+n; p=v+n; eta=3*n+1; q=U(:,modesel); lambda=s(modesel); % The time and x extent tvec=linspace(0,nper*2*pi/abs(lambda),nper*nt); dt=tvec(2)-tvec(1); Lx=2*pi/alpha; x=linspace(0,Lx,nx); % scale mode amplitude q=0.05*q/abs(q(eta)); % initialize tracer particles [px,py]=meshgrid(linspace(0,Lx,60),linspace(0,L,30)); py=py.*(1+2*real(exp(lambda*tvec(1))*q(eta)*exp(i*alpha*px))/L); px=px(:);py=py(:); % time loop for ind=1:nper*nt %{ # Expand the solution to physical space We have assumed a wavelike behaviour of the flow solution in the $x$ direction, thus we have writen for all the flow variables, for instance for the $u$ velocity $$ u(x,y,t)=\hat{u(y)}\exp(\alpha x+s t)+CC $$ where $CC$ is the complex conjugate of the other term. This way we have transformed a variable $u$ depending on three coordinates, to a variable $\hat{u}$ depending on one single coordinate, thus transforming everything into a 1D problem. What we do now is to transform back the 1D problem into a full original problem by using the exponential. A complex quantity plus its complex conjugate gives twice the real part of it, this is what we code here. In the code, we do the expansion to hysical space for all the variables $(u,v,p,\eta)$ at once in a single command. %} % expand mode to physical space qq=2*real(exp(lambda*tvec(ind))*q*exp(i*alpha*x)); % plot pressure surf(x,y,qq(p,:)-10,'facealpha',0.3); view(2); shading interp; hold on % plot free surface plot(x,L+qq(eta,:),'k-',x,0*x+L,'k--'); hold on %%%% plot the particles plot(mod(px,Lx),py,'k.'); %{ # Interpolation of the particle positions The particles are not on a cartesian grid, they can be wherever the field has brought them, the only thing that matter here for the interpolation is where they are on the $y$ grid, and then we can do the expansion in $x$ as a second step, this is less computations. %} % compute velocity at position of particles pu=interp1(y,q(u),py); pv=interp1(y,q(v),py); %{ # The Taylor expansion When we wrote the boundary conditionat the free surface for setting up the linear model, we have used Taylor expansions to express the velocity and pressure at the position of the moving interface as a function of the values at the fixed position $L$. here we do again the same thing for the particles that are above $L$. %} % For particles above L, use Taylor expansion for velocity pu(py>L)=q(u(n))+q(eta)*dy(n,:)*q(u); pv(py>L)=q(v(n))+q(eta)*dy(n,:)*q(v); % expand to physical space puu=2*real(exp(lambda*tvec(ind))*pu.*exp(i*alpha*px)); pvv=2*real(exp(lambda*tvec(ind))*pv.*exp(i*alpha*px)); % advect particles px=px+puu*dt; py=py+pvv*dt; xlabel('x'); ylabel('y'); axis equal; axis([0,Lx,0,1.3*L]); grid off hold off drawnow %{ # To create the GIF animation In this part, we add a gif animation to show the free surface %} frame = getframe(1); im = frame2im(frame); [imind,cm] = rgb2ind(im,40); outfile = 'freegravitysurfaceparticles.gif'; if ind==1 imwrite(imind,cm,outfile,'gif','DelayTime',0,'loopcount',inf); else imwrite(imind,cm,outfile,'gif','DelayTime',0,'writemode','append'); end end set(gcf,'paperpositionmode','auto'); print('-dpng','-r100','free_surface_gravity_particles.png');