%{ # Testing the domain geometry derivative This is like [domain_derivative_1D.m]() but here in 2D. The only change is that instead of imposing $$ h_{xx}+2=0 $$ in the domain, we impose $$ h_{xx}+h_{yy}+2=0 $$ and we impose as a Dirichlet boundary condition on the left and right sides of the domain, the value of the theoretical solution of the problem $$ h=y(1-y) $$ %} disp('%%%%%%%') clear all; clf; % parameters Nx=20; % number of grid points in x Ny=20; % number of grid points in y p=-1; % desired slope at top boundary L=0.9; % the length in y of the computational domain % differentiation [d.x,d.xx,d.wx,x]=dif1D('cheb',0,1,Nx); [d.y,d.yy,d.wy,y]=dif1D('cheb',0,L,Ny); [D,l,X,Y,Z,I,NN]=dif2D(d,x,y); ZZ=blkdiag(Z,zeros(Nx,Nx)); II=blkdiag(I,eye(Nx,Nx)); l.h=(1:NN)'; l.eta=NN+[1:Nx]'; l.top=[l.ctl; l.top; l.ctr]; l.bot=[l.cbl; l.bot; l.cbr]; %initial guess eta0=zeros(Nx,1); sol0=[Y(:).*(1-Y(:));eta0]; sol=sol0; % Newton iterations quit=0;count=0; while ~quit % the present solution and its derivatives h=sol(l.h); hy=D.y*h; hxx=D.xx*h; hyy=D.yy*h; eta=sol(l.eta); % nonlinear function f=[hxx+hyy+2; hy(l.top)+eta.*hyy(l.top)-p*ones(Nx,1)]; % analytical jacobian A=[D.xx+D.yy, ZZ(l.h,l.eta); ... D.y(l.top,:)+diag(eta)*D.yy(l.top,:), diag(hyy(l.top))]; % Boundary conditions loc=[l.left; l.right; l.bot; l.top]; C=II([l.bot;l.right;l.left],:); f(loc)=[C*(sol-sol0); ... % the linear boundary conditions h(l.top)+diag(eta)*hy(l.top)]; % the nonlinear boundary conditions A(loc,:)=[C; ... II(l.top,:)+diag(eta)*D.y(l.top,:)*II(l.h,:)+diag(hy(l.top))*II(l.eta,:)]; %{ # Linear extrapolation I do here the linear extrapolation in one single line of code by using array operations. This is a little tricky if you are not used to it. If you prefer, you can replace this by a loop of x, and at each loop do the linear extrapolation like we did in 1D in [domain_derivative_1D.m](). %} % Show present solution ne=10; [XX,YY]=meshgrid(x,linspace(L,L+max(eta),ne)); % grid for linear extrapolation hh=(h(l.top)*ones(1,ne))'+(hy(l.top)*ones(1,ne))'.*(YY-L); % linear extrapolation mesh(X,Y,reshape(h,Ny,Nx),'edgecolor','b'); hold on mesh(XX,YY,hh,'edgecolor','r'); plot3(x,L+eta,x*0,'k','linewidth',2); hold off % draw boundary legend('h','linear extrapolation','estimated boundary position','location','north') view([-101,16]) drawnow; % convergence test res=norm(f,inf); disp([num2str(count) ' ' num2str(res)]); if count>50|res>1e5; disp('no convergence'); break; end if res<1e-9; quit=1; disp('converged'); continue; end % Newton step sol=sol-A\f; count=count+1; end set(gcf,'paperpositionmode','auto') print('-dpng','-r80','domain_derivative_2D.png') %{ # The figure ![](domain_derivative_2D.png) # Exercices/Contributions * Please * Please %}