/** # A solver for the Two-layer equations The [Saint-Venant equations](http://en.wikipedia.org/wiki/Shallow_water_equations) can be written in integral form as the hyperbolic system of conservation laws $$ \partial_t \int_{\Omega} \mathbf{q} d \Omega + \int_{\partial \Omega} \mathbf{f} ( \mathbf{q}) \cdot \mathbf{n}d \partial \Omega + \int_{\Omega} \mathbf{F} d \Omega= 0 $$ where $\Omega$ is a given subset of space, $\partial \Omega$ its boundary and $\mathbf{n}$ the unit normal vector on this boundary. For conservation of mass and momentum in the shallow-water context, $\Omega$ is a subset of bidimensional space and $\mathbf{q}$ and $\mathbf{f}$ are written $$ \mathbf{q} = \left(\begin{array}{c} h\ \ h u_x\ \ h u_y h_s\ \ h_s u_s_x\ \ h_s u_s_y \end{array}\right), \;\;\;\;\;\; \mathbf{f} (\mathbf{q}) = \left(\begin{array}{cc} h u_x & h u_y\ \ h u_x^2 + \frac{1}{2} g h^2 & h u_x u_y\ \ h u_x u_y & h u_y^2 + \frac{1}{2} g h^2\ \ h_s u_s_x & h_s u_s_y\ \ h_s u_s_x^2 + \frac{1}{2} gh_s^2 & h_s u_s_x u_s_y\ \ h_s u_s_x u_sy & h_s u_s_y^2 + \frac{1}{2} g h_s^2 \end{array}\right), \;\;\;\;\;\; \mathbf{F} = \left(\begin{array}{c} 0\ \ g h \frac{\partial}{\partial x} \left( h_s + z_b \right)\ \ g h \frac{\partial}{\partial y} \left( h_s + z_b \right)\ \ 0\ \ g h_s \frac{\partial}{\partial x} \left( z_b + \frac{\rho}{\rho_s} h \right)\ \ g h_s \frac{\partial}{\partial y} \left( z_b + \frac{\rho}{\rho_s} h \right) \end{array}\right), $$ where $h$ the water depth, $h_s$ is the landslide thickness, $\mathbf{u}$ is the velocity vector of the water, $\mathbf{u_s}$ is the velocity vector of the landslide, and $z_b$ the height of the topography. See also [Popinet, 2011](/src/references.bib#popinet2011) for a more detailed introduction. ## User variables and parameters The primary fields are the water depth $h$, the landslide thickness $h_s$, the bathymetry $z_b$ and the flow speeds of water and landslide respectively $\mathbf{u}$ and $\mathbf{u_s}$. $\eta$ is the water level i.e. $z_b + h + h_s$. Note that the order of the declarations is important as $z_b$ needs to be refined before $h_s$, before $h$, before $\eta$. */ scalar zb[], hs[], h[], eta[]; vector us[], u[]; /** The only physical parameter is the acceleration of gravity `G` and the densities of the two fluids. Cells are considered "dry" when the water depth is less than the `dry` parameter (this should not require tweaking). */ double G = 1.; double dry = 1e-10; double RHOratio = 0.5; /** ## Time-integration ### Setup Time integration will be done with a generic [predictor-corrector](predictor-corrector.h) scheme. */ #include "predictor-corrector.h" /** The generic time-integration scheme in predictor-corrector.h needs to know which fields are updated. */ scalar * evolving = NULL; /** We need to overload the default *advance* function of the predictor-corrector scheme, because the evolving variables ($h$, $\mathbf{u}, $h_s$ and $\mathbf{u_s}$) are not the conserved variables $h$, $h\mathbf{u}, $h_s$ and $h_s\mathbf{u_s}$. */ static void advance_two_layer (scalar * output, scalar * input, scalar * updates, double dt) { // fprintf(stderr,"advance_two_layer\n"); // recover scalar and vector fields from lists scalar hi = input[0], ho = output[0], dh = updates[0]; scalar hsi = input[1], hso = output[1], dhs = updates[1]; vector uo = vector(output[2]), uso = vector(output[2+dimension]); /* Order within the scalar lists e.g. input, output, updates, evolving, [h, hs, u, us] Note that this differs from what I previously did... But this should all occur within this so as long as it is self consistent it should be fine */ // new fields in ho[], uo[] foreach() { double hold = hi[]; double hsold = hsi[]; ho[] = hold + dt*dh[]; hso[] = hsold + dt*dhs[]; eta[] = ho[] + hso[] + zb[]; if (hso[] > dry){ // fprintf(stderr,"HS wet"); vector usi = vector(input[2+dimension]); vector dhus = vector(updates[2+dimension]); foreach_dimension() uso.x[] = (hsold*usi.x[] + dt*dhus.x[])/hso[];} else{ // fprintf(stderr,"HS dry"); foreach_dimension() uso.x[] = 0.;} if (ho[] > dry){ // fprintf(stderr," H wet\n"); vector ui = vector(input[2]); vector dhu = vector(updates[2]); foreach_dimension() uo.x[] = (hold*ui.x[] + dt*dhu.x[])/ho[];} else{ // fprintf(stderr," H dry\n"); foreach_dimension() uo.x[] = 0.;} } // fprintf(stderr,"boundary\n"); //ho.prolongation = refine_linear; boundary ({hso, ho, eta, uso, uo}); // fprintf(stderr,"done\n"); } /** When using an adaptive discretisation (i.e. a quadtree)., we need to make sure that $\eta$ is maintained as $z_b + h + h_s$ whenever cells are refined or coarsened. */ /** #if TREE static void refine_eta (Point point, scalar eta) { foreach_child() eta[] = zb[] + h[] + hs[]; } static void coarsen_eta (Point point, scalar eta) { eta[] = zb[] + h[] + hs[]; } #endif */ /** ### Computing fluxes Various approximate Riemann solvers are defined in [riemann.h](). */ #include "riemann.h" double update_two_layer (scalar * evolving, scalar * updates, double dtmax) { /** We first recover the currently evolving fields (as set by the predictor-corrector scheme). NOTE change in order as mentioned above*/ scalar h = evolving[0]; scalar hs = evolving[1]; vector u = vector(evolving[2]); vector us = vector(evolving[2+dimension]); /** `Fh`, `Fhs` `Fq` and `Fqs` will contain the fluxes for $h$, $h_s$, $h\mathbf{u}$ and $h_s\mathbf{u_s}$ respectively and `S1` and `S2` are necessary to store the asymmetric topographic source terms. */ face vector Fh[], Fhs[], S1[], S2[]; tensor Fq[], Fqs[]; /** The gradients are stored in locally-allocated fields. First-order reconstruction is used for the gradient fields. */ vector gh[], ghs[], geta[]; tensor gu[], gus[]; for (scalar s in {gh, ghs, geta, gu, gus}){ s.gradient = zero; #if TREE //Is this where the problem is? Do I need to refine some other way? s.prolongation = refine_linear; #endif } gradients ({h, hs, eta, u, us}, {gh, ghs, geta, gu, gus}); //fprintf(stdout,"%% updates\n"); /** The faces which are "wet" on at least one side are traversed. First we see whether "wet" in bottom fluid - if so look for lake at rest solution $h_s+z_b=C_0$ $h=C$ If hs is dry look for lake at rest solution $h_s=0$ $h+z_b=C_0$ */ int hswet; foreach_face (reduction (min:dtmax)) { // First the bottom layer double hi = hs[], hn = hs[-1,0]; if (hi > dry || hn > dry) { // fprintf(stderr,"HS wet"); hswet=1; /** #### Left/right state reconstruction The gradients computed above are used to reconstruct the left and right states of the primary fields $h$, $\mathbf{u}$, $z_b$. The "interface" topography $z_{lr}$ is reconstructed using the hydrostatic reconstruction of [Audusse et al, 2004](/src/references.bib#audusse2004) */ double dx = Delta/2.; double zi = eta[] - hi - h[]; double zl = zi - dx*(geta.x[] - ghs.x[]- gh.x[]); double zn = eta[-1,0] - hn - h[-1,0]; double zr = zn + dx*(geta.x[-1,0] - ghs.x[-1,0] - gh.x[-1,0]); double zlr = max(zl, zr); double hl = hi - dx*ghs.x[]; double up = us.x[] - dx*gus.x.x[]; double hp = max(0., hl + zl - zlr); double hr = hn + dx*ghs.x[-1,0]; double um = us.x[-1,0] + dx*gus.x.x[-1,0]; double hm = max(0., hr + zr - zlr); /** #### Riemann solver We can now call one of the approximate Riemann solvers to get the fluxes. */ double fh, fu, fv; kurganov (hm, hp, um, up, Delta*cm[]/fm.x[], &fh, &fu, &dtmax); fv = (fh > 0. ? us.y[-1,0] + dx*gus.y.x[-1,0] : us.y[] - dx*gus.y.x[])*fh; /** #### Topographic source term In the case of adaptive refinement, care must be taken to ensure well-balancing at coarse/fine faces (see [notes/balanced.tm]()). */ #if TREE if (is_prolongation(cell)) { hi = coarse(hs,0,0,0); zi = coarse(zb,0,0,0); } if (is_prolongation(neighbor(-1,0))) { hn = coarse(hs,-1,0,0); zn = coarse(zb,-1,0,0); } #endif double sl = G/2.*(sq(hp) - sq(hl) + (hl + hi)*(zi - zl+dx*RHOratio*gh.x[])); double sr = G/2.*(sq(hm) - sq(hr) + (hr + hn)*(zn - zr-dx*RHOratio*gh.x[-1,0])); /** #### Flux update */ Fhs.x[] = fm.x[]*fh; Fqs.x.x[] = fm.x[]*(fu - sl); S2.x[] = fm.x[]*(fu - sr); Fqs.y.x[] = fm.x[]*fv; //fprintf(stdout,"2 %g %g %g %g %g\n",x,y,fh,fu,fv); } else {//h_s is dry - Note that h_s is not necessarily dry in the neighbouring cell... Fhs.x[] = Fqs.x.x[] = S2.x[] = Fqs.y.x[] = 0.; hswet=0; // fprintf(stderr,"HS dry"); } /** Now we must calculate fluxes for $h$. If $h_s>dry$ then we must satisfy $h_s+z_b=C_0$ $h=C$; If $h_s=0$ then we must satisfy $h+z_b=C_0$ */ hi = h[], hn = h[-1,0]; if (hi > dry || hn > dry) { // fprintf(stderr," H wet\n"); /** #### Left/right state reconstruction The gradients computed above are used to reconstruct the left and right states of the primary fields $h$, $\mathbf{u}$, $z_b$. The "interface" topography $z_{lr}$ is reconstructed using the hydrostatic reconstruction of [Audusse et al, 2004](/src/references.bib#audusse2004) */ double dx = Delta/2.; double zi = eta[] - hi; double zl = zi - dx*(geta.x[] - gh.x[]); double zn = eta[-1,0] - hn; double zr = zn + dx*(geta.x[-1,0] - gh.x[-1,0]); double zlr = max(zl, zr); double hl = hi - dx*gh.x[]; double up = u.x[] - dx*gu.x.x[]; double hp = max(0., hl + zl - zlr); double hr = hn + dx*gh.x[-1,0]; double um = u.x[-1,0] + dx*gu.x.x[-1,0]; double hm = max(0., hr + zr - zlr); /** #### Riemann solver We can now call one of the approximate Riemann solvers to get the fluxes. */ double fh, fu, fv; kurganov (hm, hp, um, up, Delta*cm[]/fm.x[], &fh, &fu, &dtmax); fv = (fh > 0. ? u.y[-1,0] + dx*gu.y.x[-1,0] : u.y[] - dx*gu.y.x[])*fh; /** #### Topographic source term In the case of adaptive refinement, care must be taken to ensure well-balancing at coarse/fine faces (see [notes/balanced.tm]()). */ #if TREE if (is_prolongation(cell)) { hi = coarse(h,0,0,0); zi = coarse(zb,0,0,0) + hswet?coarse(hs,0,0,0):0.; } if (is_prolongation(neighbor(-1,0))) { hn = coarse(h,-1,0,0); zn = coarse(zb,-1,0,0) + hswet?coarse(hs,-1,0,0):0.; } #endif double sl = G/2.*(sq(hp) - sq(hl) + (hl + hi)*(zi - zl)); double sr = G/2.*(sq(hm) - sq(hr) + (hr + hn)*(zn - zr)); /** #### Flux update */ Fh.x[] = fm.x[]*fh; Fq.x.x[] = fm.x[]*(fu - sl); S1.x[] = fm.x[]*(fu - sr); Fq.y.x[] = fm.x[]*fv; //fprintf(stdout,"1 %g %g %g %g %g\n",x,y,fh,fu,fv); } else {// dry Fh.x[] = Fq.x.x[] = S1.x[] = Fq.y.x[] = 0.; // fprintf(stderr," H dry\n"); } } boundary_flux ({Fh, Fhs, S1, S2, Fq, Fqs}); /** #### Updates for evolving quantities We store the divergence of the fluxes in the update fields. Note that these are updates for $h$ and $h\mathbf{u}$ (not $\mathbf{u}$). */ scalar dh = updates[0], dhs = updates[1]; vector dhu = vector( updates[2]), dhus = vector(updates[2+dimension]); foreach() { dh[] = (Fh.x[] + Fh.y[] - Fh.x[1,0] - Fh.y[0,1])/(cm[]*Delta); dhs[] = (Fhs.x[] + Fhs.y[] - Fhs.x[1,0] - Fhs.y[0,1])/(cm[]*Delta); foreach_dimension(){ dhu.x[] = (Fq.x.x[] + Fq.x.y[] - S1.x[1,0] - Fq.x.y[0,1])/(cm[]*Delta); dhus.x[] = (Fqs.x.x[] + Fqs.x.y[] - S2.x[1,0] - Fqs.x.y[0,1])/(cm[]*Delta); } /** We also need to add the metric terms. They can be written (see eq. (8) of [Popinet, 2011](references.bib#popinet2011)) $$ S_g = h \left(\begin{array}{c} 0\ \ \frac{g}{2} h \partial_{\lambda} m_{\theta} + f_G u_y\ \ \frac{g}{2} h \partial_{\theta} m_{\lambda} - f_G u_x \end{array}\right) $$ with $$ f_G = u_y \partial_{\lambda} m_{\theta} - u_x \partial_{\theta} m_{\lambda} $$ */ double dmdl = (fm.x[1,0] - fm.x[])/(cm[]*Delta); double dmdt = (fm.y[0,1] - fm.y[])/(cm[]*Delta); double fG1 = u.y[]*dmdl - u.x[]*dmdt; double fG2 = us.y[]*dmdl - us.x[]*dmdt; dhu.x[] += h[]*(G*h[]/2.*dmdl + fG1*u.y[]); dhu.y[] += h[]*(G*h[]/2.*dmdt - fG1*u.x[]); dhus.x[] += hs[]*(G*hs[]/2.*dmdl + fG2*us.y[]); dhus.y[] += hs[]*(G*hs[]/2.*dmdt - fG2*us.x[]); } return dtmax; } /** We use the main time loop (in the predictor-corrector scheme) to setup the initial defaults. */ event defaults (i = 0){ evolving =(scalar *) {h, hs, u, us}; foreach() for (scalar s in evolving) s[]=0.; boundary(evolving); for (int ii=0; ii<6; ii++) { printf (" evolving[ %d ]: %s ", ii, _attribute[evolving[ii].i].name); } printf ("\n"); /** We overload the default 'advance' and 'update' function of the predictor-corrector scheme and setup the refinement and coarsening methods on quadtrees. */ advance = advance_two_layer; update = update_two_layer; #if QUADTREE for (scalar s in {h,zb,us,u,eta}) { s.refine = s.prolongation = refine_linear; } #endif } /** The event below will happen after all the other initial events to take into account user-defined field initialisations. */ event init0 (i = 0) { printf("In init0: "); for (int ii=0; ii<6; ii++) { printf (" evolving[ %d ]: %s ", ii, _attribute[evolving[ii].i].name); } foreach() eta[] = zb[] + h[] + hs[]; boundary (all); }