/** # Resolution of the shape of a Beach by Bruun 64 & Dean 91 model It is believed that the shore cross profile is a power law $Z=Ax^n$ where $x$ is distance offshore ($x<100m$), $0 out ~~~ ##Results The analytical solution solves the equilibrium flux/dissipation $$dZ(x)^{m}/dx = Z $$ so that $Z=(\frac{(m-1)}{m} x)^{\frac{1}{m-1}}$ with m=5/3, so that we obtain $Z(x)= (3 x/5)^{2/3}$ the Bruun's solution. Note that there is obviously a problem of B.C. at the right: ~~~gnuplot set xlabel "x" set ylabel "-Z" set key left bottom p[:][-3.5:0]'out' u ($1):(-$2)t'num'w l,-(3*x/5)**(2./3) t'exact' w l linec 3 ~~~ which is $-Z(x,t)$ plotted here for t=0 .5 1 1.5 2 ... time evolution with splot: ~~~gnuplot set xlabel "x" set ylabel "t" set zlabel "Z" sp [:][:][0:5]'out' u 1:3:2 w l,(3*(x)/5)**(2./3) t'exact' w l ~~~ ## Exercise Solve now with $\partial_t Z^2$ instead of $\partial_t Z$, to have an energy like equation in $Z^2$ $$ \frac{\partial}{\partial x}Z^2 + \frac{\partial}{\partial x}(Z^{5/2})= Z $$ which is as well, $m=5/2$ $$ \frac{\partial}{\partial x}Z + \frac{\partial}{\partial x}(\frac{m}{2 (m-1)}Z^{m-1})= \frac{1}{2} $$ ##Bibliography * [Lagrée P-Y](http://www.lmm.jussieu.fr/~lagree/COURS/MFEnv/MFEnv.pdf) "Equations de Saint Venant et application, Ecoulements en milieux naturels" Cours MSF12, M1 UPMC * [Robert G. Dean](http://journals.fcla.edu/jcr/article/download/78405/75816) "Equilibrium Beach Profiles: Characteristics and Applications" Journal of Coastal Research, Vol. 7, No. 1, 1991 * [O. Pilkey, Jr.](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.527.8205&rep=rep1&type=pdf) "Mathematical Modeling of Beach Behavior Doesn't Work" */