/** # A Gaussian vortex Say, $$ v_\theta = r e^{-r^2},$$ Then the centrifugal acceleration is $$ a_r = \frac{v_\theta^2}{r} = r e^{-2r^2}.$$ This is balance by the pressure gradient $$-\nabla p = a.$$ Hence, $$ p = -\frac{1}{4}e^{-2r^2} + C.$$ Is it true? ~~~gnuplot Pressure profile set xr [0:2] set yr [-0.3:0.05] set grid set xlabel 'r' set ylabel 'Pressure' plot 'pressure', -exp(-2*x**2)/4 ~~~ Yes... */ #include "navier-stokes/centered.h" #include "profile6.h" int main() { L0 = 20; X0 = Y0 = -L0/2; N = 256; run(); } event init (t = 0) { TOLERANCE = 1e-6; foreach() { u.y[] = x*exp(-(sq(x) + sq(y))); u.x[] = -y*exp(-(sq(x) + sq(y))); } } event stop (i = 1) { profile ({p}, sqrt(sq(x) + sq(y)), "pressure"); }