/** # A test for the axisymmetric hydrostratic balance When $a_r = r$, then in a hydrostatic balance, $\frac{\mathrm{d}p}{\mathrm{d}r}= r$. So: $$p(r) = c+\frac{1}{2}r^2$$ */ #include "axi.h" #include "navier-stokes/centered.h" #include "profile5c.h" face vector av[]; p[top] = neumann(a.y[]); //Boundary conditions are important int main(){ a = av; N = 32; DT = 0.01; run(); } event acceleration(i++){ foreach_face(y) av.y[] = y; } event pres(t = 5) profile({p}, fname = "prof"); /** ~~~gnuplot Close Enough ftitle(b,c,d) = sprintf("Fit: %f^2+%4.4f*x+%4.2f", b, c, d) f(x) = b*x**2+c*x+d fit f(x) 'prof' u 1:2 via b,c,d set xlabel 'r' set ylabel 'Pressure' set key top left box set size square plot 'prof' u 1:2 t 'Data', f(x) t ftitle(b,c,d) ~~~ The fit convergences to the analytical solution for larger N. */