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' ABSTRACT

Comprehension of global o
eani
 
urrents

and, ultimately, of 
limate variability re-

quires the use of 
omputer modelling. Al-

though mu
h e�ort has been spent on the

a

ura
y of traditional �nite di�eren
e (FD)

models used in o
ean modelling, there are

still 
on
erns, espe
ially sin
e these models

have a 
rude representation of the geometry

of o
eani
 basins. Su
h a 
rude representa-

tion may in
uen
e the a

ura
y of modelling

boundary 
urrents, or unrealisti
ly represent

the impinging of eddies or the propagation

of Kelvin waves along the 
oastline. This

motivated the use of alternative modelling

te
hniques applied on 
ompletely irregular

geometries su
h as �nite element (FE) and

spe
tral element (SE) methods. In this the-

sis, we want to investigate the a

ura
y and


ost-e�e
tiveness of these three numeri
al

methods in irregular domains and to under-

stand to whi
h extent the unstru
tured grid

FE and SE methods 
onstitute an improve-

ment over the more traditional FD meth-

ods. To a

omplish this, we limit ourselves

to modelling the shallow water equations in

presen
e of irregular 
oastlines with no bot-

tom topography.

In the �rst part of the thesis, we 
ompare

the performan
es of FD methods on Carte-

sian grids with FE and SE methods in var-

ious geometries for linear and nonlinear ap-

pli
ations. We argue that the SE method is

to a 
ertain extent superior to FD methods.

In a se
ond part, we study the in
uen
e of

step-like walls on vorti
ity budgets for wind-

driven shallow water FD models. We show

that vorti
ity budgets 
an be very sensitive

to the FD formulation. This has 
ertain im-

pli
ations for using vorti
ity budgets as a di-

agnosti
 tool in FD models. In the �nal part,

we use a SE shallow water model for inves-

tigating the \inertial runaway problem" in

irregular domains for the single-gyre Munk

problem. Ideally, one would like the statisti-


al equilibrium observed at large Reynolds

number to be insensitive to model 
hoi
es

that are not well founded, e.g., the pre
ise

value of the vis
ous 
oeÆ
ient, and 
hoi
e of

dynami
 boundary 
ondition. Simple models

of geophysi
al 
ows are indeed very sensitive

to these 
hoi
es. For example, 
ows typi-


ally 
onverge to unrealisti
ly strong 
ir
ula-

tions, parti
ularly under free-slip boundary


onditions, even at rather modest Reynolds

numbers. This is referred to as the \inertial

runaway problem". We show that the addi-

tion of irregular 
oastlines to the 
anoni
al

problem helps to slow 
onsiderably the 
ir-


ulation, but does not prevent runway.
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R

�

ESUM

�

E

La 
ompr�ehension des 
ourants

o
�e
aniques globaux et, ultimement, de

la varibilit�e 
limatique requiert l'usage de la

mod�elisation num�erique. Bien que beau
oup

d'e�ort ait �et�e d�epens�e dans l'am�elioration

des mod�eles traditionnels aux di�eren
es

�nies (DF) utilis�es dans la mod�elisation

o
�eanique, il reste des interrogations 
on-


ernant la pr�e
ision de 
es mod�eles, et


e d'autant plus que 
es mod�eles ont une

repr�esentation tr�es grossi�ere de la g�eom�etrie

des bassins o
�eaniques. Une telle grossi�ere

repr�esentation peut modi�er la pr�e
ision

des 
ourants le long des fronti�eres, ou mal

repr�esenter le 
ho
 des tourbillons sur, ou la

propagation des ondes de Kelvin le long de

la fronti�ere. Ce
i a motiv�e l'utilisation des

m�ethodes num�eriques alternatives 
omme

les �el�ements �nis (EF) ou les �el�ements spe
-

traux (ES) qui s'appliquent �a des g�eom�etries


ompl�etement irr�eguli�eres. Dans 
ette th�ese,

nous voulons �etudier la pr�e
ision et le 
oût

de 
es trois types de m�ethodes num�eriques

dans des domaines irr�eguliers et 
omprendre

jusqu'�a quel point les m�ethodes EF et ES

fon
tionnant sur des grilles irr�eguli�eres 
on-

stituent un progr�es 
ompar�e aux m�ethodes

DF traditionnelles. Dans 
e but, nous

nous limitons �a mod�eliser les �equations en

eaux peu profondes en pr�esen
e des 
ôtes

irr�eguli�eres sans topographie.

Dans la premi�ere partie de 
ette th�ese,

nous 
omparons les performan
es des

m�ethodes DF sur des grilles 
art�esiennes

ave
 les m�ethodes EF et ES dans des

g�eom�etries di��erentes pour des probl�emes

lin�eaires et non-lin�eaires. Nous argumentons

que la m�ethode ES est, dans une 
ertaine

mesure, sup�erieure aux m�ethodes DF. Dans

la se
onde partie, nous �etudions l'in
uen
e

des mar
hes d'es
alier pr�esentes le long des

murs sur les budgets de vorti
it�e pour des

mod�eles DF en eaux peu profondes for
�es

par le vent. Nous montrons que les budgets

de vorti
it�e peuvent être tr�es sensibles �a la

formulation DF utilis�ee. Ce
i a 
ertaines

impli
ations 
on
ernant l'utilisation des

budgets de vorti
it�e 
omme outil de di-

agnostique dans les mod�eles DF. Dans la

derni�ere partie, nous utilisons un mod�ele

ES en eaux peu profondes pour �etudier

le probl�eme de \fuite inertielle" dans des

domaines irr�eguliers pour le probl�eme de

Munk non-lin�eaire. Id�ealement, on voudrait

que l'�equilibre statistique observ�e �a grand

nombre de Reynolds soit insensible au 
hoix

fait 
on
ernant des approximations mal|ou

peu|fond�ees du mod�ele, 
omme la valeur

du 
oeÆ
ient de vis
osit�e turbulente ou le

type de 
ondition fronti�ere. Les mod�eles

simples de 
uides g�eophysiques ont en e�et

tendan
e �a être tr�es sensibles. Par exemple,

l'�e
oulement 
onverge vers des 
ir
ulations

totalement irr�ealistes, parti
uli�erement pour

une 
ondition fronti�ere de glissement libre,

et 
e même pour des nombres raisonnables

de Reynolds. C'est 
e que l'on nomme \fuite

inertielle". Nous montrons que l'in
lusion de


ôtes irr�eguli�eres dans 
e probl�eme 
anon-

ique permet de ralentir 
onsid�erablement la


ir
ulation, mais n'�elimine pas pour autant

le probl�eme de la fuite inertielle.
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CONTRIBUTIONS

In Chapter 2, we develop our own adap-

tive spe
tral element method whi
h is an au-

tomati
 pro
edure for assessing lo
al errors

and in
reasing, a

ordingly, the resolution of

the mesh. Test and use of this pro
edure are

made in Chapters 3 and 5. We also develop

our own 
urved spe
tral element method for

better representing smoothly varying 
oast-

lines.

In Chapter 3, we develop a series of test


ases in order to study the 
onvergen
e

with resolution of the a

ura
y and 
ost-

e�e
tiveness of ea
h s
heme in regular and

irregular domains. The originality of this ap-

proa
h stems from the variety of numeri
al

methods we test and 
ompare, and the thor-

ough study of the in
uen
e of the resolution

on them. We explore the limitations of ea
h

numeri
al s
heme.

In Chapter 4, we use vorti
ity budgets

as a way to assess the a

ura
y of di�erent

numeri
al formulations for modelling wind

driven o
ean gyres in a re
tangular basin.

In parti
ular, we demonstrate that, for �nite

di�eren
e formulations, the adve
tive terms

in the vorti
ity budget do not integrate to

zero. This error 
an be exa
erbated by the

presen
e of near step-like stru
tures along

the boundary, su
h as those that o

ur when

a straight 
oastline lies at an angle to the


oordinate axes used for dis
retization. It is

further found that this problem is minimized

for 
ertain numeri
al 
hoi
es relating to the

treatment of the adve
tive and vis
ous terms.

In Chapter 5, we use a spe
tral element

model to investigate the inertial runaway

problem (i.e., that models produ
e unreal-

isti
ally strong 
ows as dissipative param-

eters are redu
ed towards what are 
onsid-

ered realisti
 values) in irregular domains.

In parti
ular, we show that small s
ale (but

resolved) features in the 
oastlines lead to

the generation of �ne s
ale stru
ture in the

vorti
ity �eld, where the Rossby number


an be
ome of order unity, and the quasi-

geostrophi
 approximation be
omes suspe
t.

That these o

ur under free-slip boundary


ondition 
ontrasts the 
lassi
, re
tangular

basin 
ase. We �nd that small s
ale stru
-

tures in the 
oastline a
t to slow, but not to

stop inertial runaway.
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Chapter 1

Introdu
tion

Modelling the o
ean has be
ome an essen-

tial 
omponent of 
oastal and navigational

hazard prevention (bea
h erosion, pollutant

transport, tidal or storm surge, i
e drift,

wave height). Moreover, the o
ean being

a large 
omponent of the global 
limate,

to model its 
ir
ulation is essential to ob-

taining a better understanding of the dra-

mati
 
limati
 
hanges whi
h either have o
-


urred or might o

ur. Finally, some the-

oreti
al studies require the use of models

in order to understand fundamental physi
al

pro
esses whi
h involve nonlinear dynami
s

and/or 
omplex geometries, and whi
h are

beyond analyti
al approa
hes.

The �rst attempts to model the o
ean 
ir-


ulation were made in the middle of the 20th


entury, after the work of Ekman (1905) who

re
ognized the importan
e of the wind as the

major sour
e of me
hani
al for
ing. Sver-

drup (1947) derived a simple law that relates

the o
ean 
urrents to the 
url of the wind

fri
tion. Stommel (1948) and Munk (1950)

derived analyti
al models of the wind in-

du
ed o
ean 
ir
ulation in 
losed re
tangular

basins using simpli�ed dissipative laws. Both

the Stommel and Munk models a�ord simple

explanation of the westward intensi�
ation

of o
eani
 
urrents, su
h as observed for the

Gulf Stream or the Kuroshiwo. An impor-

tant threshold in 
omputer performan
es was

rea
hed in the late sixties, and this allowed

for the �rst full prognosti
 three-dimensional

studies of the o
ean 
ir
ulation (Bryan and

Cox, 1967; Bryan, 1969). These models were

driven by me
hani
al for
ing (the winds and

a bottom drag) and by 
uxes of salt and

heat ex
hanged with the atmosphere. They


ould take into a

ount the 
omplexity of

the geometry and the nonlinear nature of

the o
eani
 
urrents. Ideally, these models

should be able to �ll the gaps in the data

and give reasonable estimates of the o
ean


ir
ulation. However, be
ause of their inher-

ent 
omplexity, the poor knowledge of nu-

merous physi
al pro
esses and problems with

the de�nition of 
oastlines, straits and sea-

mounts, they drift easily from any reason-

able state if no restoring terms are added to

the equations for temperature and sanility.

Thus, prognosti
 three-dimensional models

may sometimes look like expensive interpo-

lators and yield no very di�erent results than

simpler inverse models do. Nonetheless, they

have produ
ed useful estimates of the role

of the o
eans in the thermal global budget

and the importan
e of the so-
alled 
onveyor

belt.

Our main 
on
ern is the representation of

irregular domains in numeri
al o
ean models,

and their in
uen
e on the dynami
s of the


urrents. Models, so far, have only 
rudely

represented these irregular boundaries, ei-

ther in the verti
al (the topography) or in the

horizontal (the 
oastlines). Our obje
tive in

this thesis is to evaluate the a

ura
y of 
on-

ventional numeri
al methods in the presen
e

of irregular 
oastlines and to introdu
e more

a

urate alternatives.

Furthermore, we suspe
t that irregular


oastlines have important but sometimes

under-estimated in
uen
es of the dynami
s

of the 
urrents 
owing along them. The en-

ergeti
s of these 
urrents are 
ontrolled by

the transfer of energy to smaller s
ales by

nonlinear intera
tions. These intera
tions

are likely to take pla
e along the western

part of the o
eani
 basins where the 
ur-

rents are the strongest. In parti
ular, as

the geostrophi
 balan
e (the main assump-

tion governing the dynami
s of the 
urrents)

in these regions breaks down, we hint at

possible intera
tions between the geostrophi


1
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and ageostrophi
 modes. We therefore fo
us

on models whi
h are simple enough to rep-

resent geostrophi
-ageostrophi
 intera
tions

on a large range of s
ales. A shallow water

model seems appropriate for these goals. The

dynami
s are only two dimensional whi
h al-

lows for very high resolutions in the horizon-

tal dire
tions, as opposed to more 
omplex

three-dimensional models where the same

level of resolution would be too expensive.

In one parti
ular 
ontext, we introdu
e a

quasi-geostrophi
 (QG) model for 
ompari-

son. This parti
ular type of model repre-

sents only the geostrophi
 motions. Previ-

ous studies fo
using on nonlinear intera
tions

were usually done in very idealized and reg-

ular domains using QG models. Hen
e, we

hope to make an interesting 
ontribution by


ondu
ting relatively simple experiments in-

volving idealized but still irregular 
oastlines

and somewhat more 
omplex dynami
s 
om-

pared to QG models.

The problem of a

urately representing

the geometry of the domain in o
ean mod-

els is divided in two sub-problems: repre-

senting the bottom boundary (the topogra-

phy) and representing the lateral boundaries

(the 
oastline). Topographi
al features (sills

or sea-mounts) are essential to the mixing

of waters of di�erent properties, origins and

depths, and, therefore, their in
uen
e ex-

tends to the largest s
ales. Coastlines par-

tially en
lose the o
eani
 basins. Their pres-

en
e is essential to the 
omprehension of the

o
eani
 
urrents (su
h as the westward in-

tensi�
ation of 
urrents). It was early re-

alized that a 
rude verti
al representation

of the topography (z- or geopotential verti-


al 
oordinate) 
ould be detrimental to an

a

urate modelling of the o
ean 
ir
ulation.

In parti
ular, waters of di�erent properties

tend to mix over sills with dramati
 
onse-

quen
es for the global o
ean 
ir
ulation if

the verti
al dis
retization is too 
rude. To

remedy this problem, verti
al terrain follow-

ing 
oordinates were proposed, despite var-

ious known limitations. However, the hor-

izontal dis
retization has not re
eived the

same level of s
rutinity. Most of the modern

o
eani
 models still 
rudely represent 
oast-

lines. A 
rude horizontal dis
retization has

several 
onsequen
es. Straits may be under-

resolved and the asso
iated ex
hange of wa-

ter modi�ed: The strait of Gilbratar 
on-

trols the Mediterranean salt input into the

Atlanti
; the Bering strait 
ontrols the fresh-

water input between the Ar
ti
 and the Pa-


i�
 and the Indonesian ar
hipelago is notori-

ous for being the lo
ation of the so-
alled re-

turn 
ow of the vast thermo-haline 
onveyor

belt whi
h 
ir
les the globe. A 
rude hori-

zontal representation has also retardation ef-

fe
ts for fast o
eani
 modes (Kelvin waves)

whi
h propagate along 
oastlines (S
hwab

and Beletsky, 1998). For the wind-driven 
ir-


ulation, little is known about the in
uen
e

of 
rude horizontal representations.

In order to study the in
uen
e of the


hoi
e of the numeri
al method, we propose

to test several of them, and investigate whi
h

one best handles irregular 
oastlines. We

therefore propose to test di�erent staggerings

of the �nite di�eren
e (FD) method and sev-

eral �nite element (FE) formulations against

a spe
tral element method. The test-
ases

we 
hoose are very idealized in order to fo-


us only on the dynami
al aspe
ts of two-

dimensional 
ows (no physi
al parameteri-

zations ex
ept for 
onstant dissipative 
oeÆ-


ients) and range from simple linear and non-

linear test-
ases in square domains, to linear

and non-linear test-
ases in smoothly irreg-

ular domains. The �nite di�eren
e models

range from the 
onventional Arakawa C-grid

(preferentially used for regional studies |

e.g. Ble
k and Boundra, 1981; Blumderg and

Mellor, 1983), to the 
onventional Arakawa

B-grid (preferentially used for global stud-

ies as in Bryan-Cox derived models | e.g.

Bryan, 1969; Cox, 1984), to the un
onven-

tional A-grid (Dietri
h et al., 1993).

We 
hoose to use the FE method be
ause

it has the de
isive 
hara
teristi
 of repre-

senting boundaries more eÆ
iently than the

more 
onventional FD method and be
ause

it presents variable resolution 
apabilities.

O
eanographers, espe
ially the tidal 
ommu-

nity use FE models to represent tidal inter-

a
tions and resonan
es whi
h o

ur at di�er-

ent s
ales, from o
ean basin to 
oastal in-

lets (Connor and Wang, 1974; Lyn
h and

Gray, 1979; Walters and Cheng, 1979). Some

of the modern FE models are derived from

the earlier models formulated by Lyn
h and

Werner (1987) and Le Provost et al. (1994).

Others used the QG approximation and pro-

posed a �nite element formulation of the vor-

ti
ity equation for the general o
ean 
ir
u-

lation (Fix, 1975; Dumas et al., 1982; My-

ers and Weaver, 1995); results were very en-


ouraging. Unfortunately, no general 
ir
ula-
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tion model based on the primitive equations

(explained below) has been proposed based

on the FE method and we try to determine

the reasons for this relative failure. On the

other hand, the spe
tral element method (an

extension of the �nite element method) has

been used with a relative su

ess by Iskan-

darani et al. (1995). Their method is based

on quadrangular elements; instead, we fa-

vor the use of triangular elements whi
h of-

fer in
reased geometri
al 
exibility. Spe
i�-


ally, we propose to test a spe
tral element

model based on this dis
retization te
hnique.

The apparent advantage of the spe
tral el-

ement method lies in the a

epted advan-

tage of spe
tral methods (the a

ura
y and

the fast 
onvergen
e with in
reasing resolu-

tion for regular problems) and the 
exibil-

ity of an irregular grid. However, as with

the spe
tral method, there is always the pos-

sibility that Gibbs os
illations appear when

the �elds being approximated are too irreg-

ular or under-resolved (the 
lassi
al exam-

ple is the step-fun
tion). We try to solve

this problem by use of an adaptive method

whi
h in
reases the resolution (the number of

triangles) in regions where the largest errors

in the solution are observed (to be de�ned

later). Finally, sin
e �nite element methods

are potentially more 
ostly than 
onventional

�nite di�eren
e methods due to the need for

more matrix inversions, the spe
tral element

method may be a good alternative be
ause

its enhan
ed a

ura
y (
ompared to �nite el-

ements) is not severely o�set by an ex
essive


ost. In order to verify this statement, we

give an a

ura
y-to-
ost fun
tion for all mod-

els.

Modelling the o
ean is very 
hallenging

due to the 
oexisten
e of many physi
al pro-


esses at various spatial and time s
ales, from

the lowest s
ales (salt intrusion and vis
ous

boundary layers of a few 
entimeters), to sur-

fa
e waves indu
ed by wind or wave break-

ings, tides, geostrophi
 eddies, to the general

o
ean 
ir
ulation. Sin
e all these pro
esses


an intera
t with ea
h other, it is virtually

impossible to reprodu
e and isolate with a

high degree of realism any of these pro
esses.

Most often, approximations and parameteri-

zations are used to represent the small s
ale

(or sub-grid) phenomena and limit the ex-

pli
it motions of the model to the s
ales of

interest. In this hierar
hy of approximations,

the barotropi
 QG model represents the lead-

ing largest s
ale and lowest frequen
y ap-

proximation. There is no verti
al stru
ture

and no horizontal divergent motions su
h as

gravity waves. Then, somewhat more 
om-

plex is the shallow water model. The vari-

ables are the horizontal velo
ity, (u; v) and

the elevation of the free-surfa
e, �. It al-

lows for divergent motions but still does not

permit verti
al stru
ture. Layered models

are extended versions of shallow water mod-

els and allow for 
rude verti
al (baro
lini
)

variations. For more realisti
 verti
al stru
-

tures, the so-
alled primitive equations are

used. They are based in the in
ompressible

Navier-Stokes equations and use the Boussi-

nesq and hydrostati
 assumptions. Further

improvement 
an be gained by using an non-

hydrostati
 model whi
h 
an represent the

small s
ale 
onve
tion. However, the limita-

tion imposed by 
omputer performan
e �xes

the length s
ales and the physi
al pro
esses

whi
h 
an be expli
itly resolved. Some fea-

tures, su
h as synopti
 eddies, are very dif-

�
ult to resolve in global 
ir
ulation mod-

els. These eddies are of the order of 10 to

100 km and are relatively small 
ompared

to the basin s
ale (10,000 km). Nonethe-

less, some authors (Holland and Lin, 1975;

Treguier, 1992) stress the importan
e of rep-

resenting expli
itly the role of the eddies in

the transfer of energy between the di�er-

ent s
ales and their positive in
uen
e on the

(more realisti
) mean �elds. These pro
esses


an not be perfe
tly mimi
ked by the alterna-

tive strategy of using eddy-parameterizations

and, therefore, this strategy is argued to be


awed (Lesieur, 1997). Moreover, these pa-

rameterizations use 
oeÆ
ients diÆ
ult to

adjust to real observations when these 
oeÆ-


ients are not simply \
osmeti
". Therefore,

a good general o
ean model should be eddy-

resolving. However, sin
e the required reso-

lution for a general 
ir
ulation model of the

o
ean is too high (10 km at mid-latitudes),

models should have, at least, variable res-

olution 
apabilities, in the sense that they

should have 
apabilities to follow and resolve

isolated eddies or westward boundary 
ur-

rents, while the rest of the domain is dis-


retized at a 
oarser resolution.

It may be important to represent other

physi
al pro
esses. The Topex-Poseidon

satellite mission, for instan
e, renewed in-

terest in the surfa
e o
ean large s
ale a
-

tivity: tides, Kelvin and Rossby waves and

synopti
 eddies whose signature were mea-

surable on the surfa
e elevation �eld of the
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o
ean. Hen
e, a good general or regional

o
ean model should also have a moving free-

surfa
e whi
h allows for fast barotropi
 grav-

ity waves. This was also pointed out by

studies of the verti
al eddy-vis
osity over

the rough topography of the Atlanti
 ridge

(Polzin et al., 1997). The large values of the

eddy-vis
osity observed over the ridge, prob-

ably indu
ed by external tides, imply that

the general 
ir
ulation must intera
t with the

tides, i.e. the QG physi
s intera
ts with the

large s
ale gravity waves (ageostrophi
 hori-

zontally divergent dynami
s). From a the-

oreti
al point of view, it seems also more

and more ne
essary to in
lude ageostrophi


motions in numeri
al models, even in the

extra-tropi
s. The diÆ
ulty 
omes from ex-

plaining the 
as
ade of energy down to the

mole
ular vis
osity s
ale where the energy


an be dissipated. Indeed, the two dimen-

sional (and QG) dynami
s tend to 
as
ade

the energy up to the Rhines arrest s
ale (50

to 200 km) in typi
al basins and not down.

Therefore, there is no 
lear me
hanism that


as
ades down and dissipates the energy in

QG dynami
s. This me
hanism may 
ome

from the non-linear intera
tions between the

geostrophi
 and ageostrophi
 modes. This

may be visible from spe
tral analysis (Stam-

mer, 1997) whi
h show no parti
ular 
ut-

o� frequen
ies or wave-numbers separating

geostrophi
 and ageostrophi
 modes

1

.

The presen
e of irregular 
oastlines may

also be important for the intera
tions of the

geostrophi
 and ageostrophi
 modes. First,

be
ause it provides a for
ing sour
e at var-

ious wave numbers and, moreover, be
ause

the westward side of o
ean basins is the lo-


ation where the geostrophi
 approximation

is most likely to break down, i.e., where

the transfer of energy is most likely to o
-


ur. These pre
eding arguments imply that

general 
ir
ulation models should allow for

the intera
tions between the geostrophi
 and

ageostrophi
 motions. The simplest system

that allows for su
h intera
tions is the shal-

low water equation system.

1

To be pre
ise, the elevation slope (related to the

velo
ity) peaks at a wave-number whi
h ranges de-

pending on latitude between the Rhines s
ale and

the �rst baro
lini
 Rossby radius of deformation. It

is yet un
lear how to interpret these results in terms

of separation of geostrophi
 and ageostrophi
 modes,

as the Rossby radius lies at the observational limit of

the instrument.

Also for physi
al reasons, even eddy-

resolving models need an expli
it param-

eterization of dissipation. Although very


rude, this is usually done through an ex-

pli
it eddy-vis
osity (Lapla
ian operator) pa-

rameterization. Su
h a parameterization re-

quires an arbitrary 
hoi
e for the dynami-


al boundary 
ondition at the walls (a prob-

lem whi
h is exa
erbated when higher or-

der dissipations are employed). We 
onsider

herein only two boundary 
onditions. One

is the free-slip boundary 
ondition and 
or-

responds to 
uids being free to slip along

lateral boundaries. There is some ambigu-

ity as to the pre
ise de�nition of free-slip.

Pedlosky (1987, p. 183) takes the point of

view that it 
orresponds to there being no

vis
ous 
ux of tangential momentum a
ross

the boundary (i.e., �[�v=�x + �u=�y℄ = 0

at the wall). We take a less stringent de�-

nition by simply for
ing the normal deriva-

tive of the tangential velo
ity to be zero (for

instan
e, �v=�x = 0 on a meridionally ori-

ented wall). The latter 
hoi
e is the one gen-

erally found in the literature. On straight

walls, the two de�nitions are equivalent, and


orrespond to verti
al vorti
ity vanishing at

the wall. On 
urved boundaries, either de�-

nition mentioned above results in non-zero

relative vorti
ity

2

. This bears some dy-

nami
al 
onsequen
es that we dis
uss below.

The se
ond boundary 
ondition is the so-


alled no-slip boundary 
ondition whi
h 
or-

responds to 
uids that do not slip along walls

(the tangential velo
ity is zero), and leads

to strong shear along walls. This bound-

ary 
ondition is 
onsidered to be the \real"

one be
ause it is the one observed in lab-

oratory experiments at mi
ros
ales. How-

ever, at the resolution used in modern o
ean

models (1 to 100 km), it is not 
lear whi
h,

if either, boundary 
ondition is appropriate.

The present trend in o
ean modelling is to

go towards higher Reynolds number (smaller

lateral vis
osity) and higher resolution along

with no-slip boundary 
onditions. But the

level of resolution is still very far from suf-

�
ient to represent realisti
 vis
ous bound-

ary layers, although inertial boundary layers

are de�nitely be
oming more realisti
. On

the other hand, authors experien
ed prob-

lems with the free-slip boundary 
ondition.

In an idealized square basin and barotropi


o
ean, it is observed that under single-gyre

wind for
ing and de
reasing eddy-vis
osity,

2

Pedlosky's de�nition 
an lead to larger values of

the relative vorti
ity.
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the o
eani
 
urrents tend to jump to unre-

alisti
ly high values with no signs of tran-

sient eddies, whatever the resolution of the

model is. Hen
e, the free-slip boundary 
on-

dition prevents the transient a
tivity whi
h

usually allows for reasonable mean 
urrents

by transporting the ex
ess of negative vor-

ti
ity from the interior, through the inertial

layer to the walls, where it is dissipated (Ped-

losky, 1996). Using a barotropi
 QG approx-

imation, Dengg (1992) showed that free-slip


ows tend not to separate from a 
ape 
om-

pared to the 
lear separation observed with

no-slip 
ows, whatever the value of the wind

for
ing. For all of these reasons, it seems

safer to use the no-slip boundary 
ondition,

even if it requires unrealisti
ly large vis
os-

ity values in order to resolve the boundary

vis
ous sub-layer. Nonetheless, these studies

fail to realize some important issues. The ab-

sen
e of transients and separation, under the

free-slip boundary 
ondition, is 
onne
ted to

the fa
t that most of those models fail to pro-

du
e relative vorti
ity at the walls. This is

be
ause the relative vorti
ity at the bound-

ary is spe
i�ed to be zero for reasons of sim-

pli
ity. Therefore, those studies fail to note

that, even under free-slip, 
ows 
an produ
e

relative vorti
ity simply be
ause of the 
oast-

line 
urvature. Hen
e, absen
e of transients

in a square basin is due to the idealized

straight walls. If the walls were 
urved (or,

in more general sense, irregular, as they are

in nature) , there is a 
han
e that transients

would appear and play the important role of

transporting ex
ess of negative vorti
ity from

the interior to the walls. For the same reason,

separation of the o
eani
 
urrents around a


ape 
an o

ur be
ause the 
ape is round

and 
an produ
e the ne
essary vorti
ity re-

quired for separation. Of 
ourse, due to their

fra
tal nature, the 
urvature of the 
oastline

depends on the sampling resolution 
hosen

to represent the 
oastline. Therefore, the

knowledge about 
oastline 
urvature is sub-

je
tive. This, in itself, would be a good rea-

son for not 
onsidering the free-slip bound-

ary 
ondition for pra
ti
al o
ean modelling.

Nonetheless, we would like to revisit the de-

bate between free-slip and no-slip and inves-

tigate if, at least from a theoreti
al point of

view (when the 
urvature is known), use of

free-slip is permissible. For this reason, we

dis
ard all baro
lini
 pro
esses and only 
on-

sider an idealized model of the o
ean, the so-


alled shallow water model, in presen
e of ir-

regular boundaries and driven solely by wind

fri
tion. The des
ription of both geostrophi


and ageostrophi
 motions in this model al-

lows for observations of the intera
tions be-

tween the two kinds of motions whi
h may

be important, espe
ially in presen
e of ir-

regular boundaries. In terms of physi
s and

geometri
al representations, our study 
on-

trasts with and should be an improvement

over earlier theoreti
al studies based on the

QG approximation and re
tangular basins.

The thesis is organized as follows. In

Chapter 2, we present the di�erent numeri
al

methods and, in Chapter 3, we test them for

simple test-
ases in order to understand the

e�e
tive trun
ation order and 
ost of these

methods in presen
e of irregular domains. In

Chapter 4, we further analyze the issue of

dis
retization in FD models and, in parti
-

ular, how it relates to vorti
ity budgets of

the whole basin. In Chapter 5, we inves-

tigate the inertial run-away problem under

free-slip boundary 
onditions in irregular do-

mains. Con
lusions are presented in Chap-

ter 6.



Chapter 2

Presentation of the Numeri
al

Methods

In this 
hapter, we review the three nu-

meri
al methods and the di�erent models

we will use in this thesis. In parti
ular,

we stress the limitations of ea
h as it re-

lates to the dis
retization of irregular do-

mains. In the 
ase of the spe
tral element

method, we 
ontribute to the development

of the method by proposing our own adap-

tive te
hnique. Furthermore, we present our

own implementation of 
urved spe
tral ele-

ments. Although 
urved elements are quite

natural to the spe
tral element method, we

found very little information in the literature

with respe
t to their implementation.

The idealized equations we propose to

solve are the shallow water (SW) equations.

These equations are grossly simpli�ed 
om-

pared to the primitive equations. Nonethe-

less, the dynami
al pro
esses involved in the

formation of wind-driven 
ir
ulations and

the intera
tions with irregular 
oastlines are

similar enough that we 
an restri
t ourselves

to these equations as an introdu
tory study.

The equations are

�

t

u+ u �ru+ fk� u+ gr� =

�

h

+ �r

2

u (2.1)

�

t

� +r � (uh) = 0 , (2.2)

where symbols are de�ned in Table 1. These

equations 
orrespond to a Boussinesq, hydro-

stati
, homogeneous o
ean in whi
h we as-

sume that there is no verti
al stru
ture, re-

du
ing the real three-dimensional (3D) prob-

lem to a simple two-dimensional (2D) prob-

lem. One remark 
on
erns the treatment of

the gravity waves in these equations. The

natural speed of barotropi
 gravity waves is

p

gH where g = 9:81m s

�2

is the a

eleration

due to gravity and H is the typi
al o
eani


depth. Sin
e a reasonable value for H is

about 4000 m, the phase speed for barotropi


gravity waves is about 200 m/s. In order

to use reasonable time-steps and be able to

perform long time simulations, these modes

have to be slowed down by using a \redu
ed"

gravity. This approa
h is not in
onsistent

with the a
tual physi
s of the o
ean. In

fa
t, in the presen
e of a thermo
line and a

deep layer at rest below the thermo
line, the

SW equations with redu
ed gravity repre-

sent, in some sense, the �rst baro
lini
 mode

dynami
s, i.e., the dynami
s of the upper

layer. Indeed, this upper layer happens to

be the lo
ation of the most intense dynam-

i
al events. The redu
ed gravity is de�ned

as g

0

= g�� =�

0

where �� is the jump in

density through the py
no
line and �

0

the

average value for the density of the o
ean.

For example, the Kelvin waves observed in

the equatorial Pa
i�
 and along the western

Ameri
an 
oast have phase speed of 2-3 m/s

(Boulanger and Fu, 1996; Ramp et al., 1997),


lose to the phase speed of 3.16 m/s obtained

in a SW redu
ed gravity model where the re-

du
ed gravity is �xed at 10

�2

m s

�2

and the

depth above the thermo
line is taken to be

1000 m. Hen
e, these equations are 
onsis-

tent with a �rst order approximation of the

physi
al pro
esses involved in the layer above

the thermo
line.

6
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(x; y; z) the 
oordinate system (east-north-upward)

u = (u; v; 0) horizontal velo
ity verti
ally averaged

� elevation of the water surfa
e taken from rest

h

b

height of the water 
olumn above the o
eani
 
oor at rest

k = (0; 0; 1) unit ve
tor normal to the horizontal plane pointing upward

r gradient operator

h = � + h

b


uid layer thi
kness

U = hu verti
ally averaged horizontal 
ux of mass

q = (� + f)=h potential vorti
ity

� = k � (r� u) relative vorti
ity

f = f

0

+ �y Coriolis parameter varying with latitude

B = g� +

1

2

u � u Bernoulli fun
tion

� dynami
 eddy vis
osity

g

0

= 0:01 m.s

�2

redu
ed gravity a

eleration

f

0

= 1:0285 10

�4

s

�1

de�ned at 45

0

N deg.

� = 1:607 10

�11

m

�1

s

�1

de�ned at 45

0

N deg.

L

Rossby

= 31:22 km the Rossby radius

L

x

, L

y

the lengths of the basin (=1000 km when unspe
i�ed)

� = (�

x

; �

y

)

wind stress in m

2

s

�2

. For the single gyre wind

for
ing, �

x

= �10

�4

sin(� y=L

y

) and �

y

= 0.


 basin domain

Æ
 boundary of the basin domain

n normal ve
tor oriented outward the domain

C = u �ru+ f k� u Adve
tion-Coriolis terms

Table 2.1: List of variables in (2.1{2.2)
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2.1 The Time Dis
retization

Several time-stepping s
hemes are 
onsidered

and used in 
onjun
tion with one of the spa-

tial dis
retization te
hniques proposed in the

following se
tions. For 
larity, we review the

time-stepping te
hniques separately in this

se
tion. Let us 
onsider the equation

�u

�t

= F (u) . (2.3)

The time-operator 
an be �nite-di�eren
ed

using a Taylor's series expansion trun
ated

after the �rst term:

�u

�t

(t

n

) =

u

n+1

� u

n

�t

+O(�t) . (2.4)

The simplest time dis
retization 
onsists

then of integrating (2.3) given the previ-

ous time-step �elds. This formulation 
orre-

sponds to the so-
alled expli
it forward Euler

s
heme and is only �rst order a

urate

u

n+1

= u

n

+�t F (u

n

) . (2.5)

This formulation is usually re
ommended for

the integration of the dissipative or fri
tion

terms, be
ause no large pre
ision is required

in time, as long as the small s
ale numeri-


al noise are damped (and the s
heme is sta-

ble). For ensuring stability, a 
ondition on

the magnitude of the time step, �t, applies.

For instan
e, when F (u) = �r

2

u (a vis
ous

dissipation term), this 
ondition is

2��t

�x

2

< 1 . (2.6)

Unfortunately, the forward Euler s
heme is

not neutral for various problems, in the sense

that some quantities su
h as mass, momen-

tum or energy are not 
onserved but may

de
ay or grow as the simulation is advan
ed

in time. When these quantities grow with

time, the model is of 
ourse unstable. This

happens, for instan
e, when F (u) represents

the Coriolis terms. In order to better 
on-

serve 
ertain quantities, a better s
heme is

the expli
it leapfrog s
heme

u

n+1

= u

n�1

+ 2�t F (u

n

) , (2.7)

based on a se
ond order trun
ation

�u

�t

(t

n

) =

u

n+1

� u

n�1

�t

+O(�t

2

) . (2.8)

The leapfrog s
heme is thus 
entered in time.

As the Euler s
heme, this s
heme is restri
ted

to 
ertain 
onditions for stability. For in-

stan
e, if F (u) represents an adve
tion or a

wave propagation problem and using the def-

inition that the Courant number is given by

C =


�t

�x

(2.9)

where 
 is a phase speed or an adve
tion

velo
ity, the CFL (Courant-Friedri
h-Levy)


ondition implies that

C < 1 (2.10)

for stability. The Leapfrog s
heme is neu-

tral and 
onditionally stable for problems

involving, for instan
e, Coriolis or nonlin-

ear adve
tion terms, and is unstable for

dissipative terms. Moreover, the leapfrog

s
heme requires a time-�ltering, be
ause

the non-linearities and round-o� errors lead

to a de
oupling of the solution between

even and odd time steps. In order to

avoid restri
tion of time-step magnitude,

other time-integrations te
hniques were in-

trodu
ed. They in
lude impli
it and semi-

impli
it s
hemes. Nonetheless, these s
hemes

have to respe
t a 
ertain 
ondition on the

Courant number for ensuring a good a

u-

ra
y. The semi-impli
it

1

s
heme 
onsists of

u

n+1

= u

n

+�t F (u

n+1=2

) , (2.11)

where F (u

n+1=2

) = 1=2(F (u

n+1

) + F (u

n

))

and the fully-impli
it s
heme (also 
alled the

ba
kward Euler s
heme) is implemented as

u

n+1

= u

n

+�t F (u

n+1

) . (2.12)

The advantage of the semi-impli
it treat-

ment is that the time-operator is 
entered

and se
ond-order. For the Coriolis terms,

the fully-impli
it is dissipative, and the semi-

impli
it (
entered in time) is neutral. For

the treatment of the fast linear gravity waves

present in the shallow water equations, the

advantage of using a semi-impli
it or fully-

impli
it te
hnique is that there is no restri
-

tion on time-steps (the domain of stability of

the models is extended) but at the expense of

1

As termed in the atmospheri
 
ommunity in op-

position to the full impli
it formulation but also


alled the trapezoidal rule or the Crank-Ni
olson

s
heme in other �elds.
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solving a matrix problem due to the 
oupling

of the variables through partial derivatives.

The disadvantage of these two te
hniques is

that some physi
al pro
esses, su
h as gravity

waves, are slowed down if a too large time-

step is used (i.e., C > 1). This may have


onsequen
es for the intera
tions of impor-

tant dynami
al pro
esses (the geostrophi


and ageostrophi
 modes) and, therefore, this

may lead to a less a

urate representation

of the 
as
ade of energy (as mentioned in

Bartello and Thomas, 1996).

The non-linear adve
tive terms, u � ru,

require a spe
ial treatment. When we 
on-

sider the 
omputation of u

n+1

, they 
an be


omputed using the previous time step as

u

n

� ru

n

. Then, if the time-operator is


entered and leapfrog, the non-linear terms

are neutrally treated, otherwise, they are

o�-
entered for the other time-integration

s
hemes and may be unstable or dissipa-

tive depending on the time integration te
h-

niques. The non-linear terms 
an be treated

impli
itly as u

n

�ru

n+1

or fully impli
it us-

ing an iterative pro
edure. Another way is to

use an expli
it 4th order Adams-Bashforth

formulation

u

n+1

= u

n

+

�t

12

�

23 F (u

n

)� 16 F (u

n�1

) + 5 F (u

n�2

)

�

.

(2.13)

The s
heme is o�-
entered. It requires saving

�elds from several previous time-steps and

the time-step is limited by a CFL 
ondition.

Use of Runge-Kutta te
hniques is also possi-

ble, the fourth order one having the advan-

tage of good quadrati
 
onserving properties,

su
h as for the energy. But Runge-Kutta

te
hniques require sub-step time integrations

as in this 4th order example:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

h

1

= F (u

n

; t

n

)

h

2

= F (u

n

+�t h

1

=2; t

n

+�t=2)

h

3

= F (u

n

+�t h

2

=2; t

n

+�t=2)

h

4

= F (u

n

+�t h

3

; t

n

+�t)

u

n+1

= u

n

+�t(h

1

+ 2h

2

+ 2h

3

+ h

4

)=6 .

(2.14)

The Runge-Kutta formulations are neutral

for all phenomena, very a

urate, and require

a CFL 
ondition. Adams-Bashforth formula-

tions are usually re
ommended for non-linear

integrations, but have the pra
ti
al disad-

vantage of requiring smaller time-steps than

equivalent order Runge-Kutta integrations,

to the point that there is no de�nite advan-

tage of one te
hnique over the other

2

. Here-

after, we tend to use the 4th order Runge

Kutta integration be
ause of its a

ura
y

and be
ause it does not require any time �l-

tering.

A 
ompletely di�erent time-stepping ap-

proa
h 
onsists of using the Lagrangian

framework (the grid follows the parti
les)

instead of the Eulerian framework impli
-

itly assumed previously (the grid is �xed

in time). The Lagrangian time-integration

takes advantage of the fa
t that the dynam-

i
al equations are simpli�ed when written in

a Lagrangian form

D

t

u+ fk� u+ gr� =

�

h

+ �r

2

u (2.15)

D

t

lnh+r � u = 0 , (2.16)

where D

t

is the Lagrangian or total time

derivative. This is another way of saying that

the parti
le traje
tory is the 
hara
teristi


line for the adve
tive-only problem. Hen
e,

the problemati
 non-linear terms appearing

in the equations do not appear expli
itly (ex-


ept for the term in the mass balan
e). The

main diÆ
ulty is in following the parti
les

that form the 
ow, and espe
ially expressing

the right-hand-side terms. In order to avoid

this problem, the so-
alled semi-Lagrangian

formulation was developed whi
h takes ad-

vantage of both the Lagrangian and Eule-

rian frameworks (see Staniforth and Côt�e,

1991, for a review). The right-hand-side

terms are dis
retized on the Eulerian frame-

work (in whi
h derivatives are easy to ex-

press) and the time-derivative is treated on

the Lagrangian framework. The advantage

is in keeping a �xed grid or domain in time.

An interpolation pro
edure is used in or-

der to transfer information from the Eule-

rian grid to the Lagrangian grid (the par-

ti
le traje
tories). As the equations are

time-stepped along the adve
tive 
hara
ter-

isti
 lines (the parti
le traje
tories), there

are no limitations imposed by numeri
al sta-

bility on the magnitude of the time-step

2

This was observed for a single gyre wind-driven

experiment in a square domain (the one used in Se
-

tion 3.4) using the se
ond order C-grid FD model

given in Se
tion 2.2.2.
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due to the adve
tive terms. Therefore, the

method is e�e
tive in adve
tion dominated


ows. To be pre
ise, a

ording to Bartello

and Thomas (1996), the method is e�e
-

tive only if the spe
trum of energy is very

steep (not too mu
h energy at the small-

est s
ales). Moreover, a semi-impli
it or

fully-impli
it method 
an be added to the

semi-Lagrangian treatment of the equations

(Robert, 1981). Thus the model has virtu-

ally no limitations due to stability regard-

ing time-step magnitude with respe
t to any

physi
al pro
ess des
ribed by the momentum

equations. However, the presen
e of orogra-

phy is troublesome in semi-Lagrangian meth-

ods, e�e
tively redu
ing the allowable time-

step (Rit
hie and Tanguay, 1996). The ad-

vantage of using semi-Lagrangian methods in

an o
ean where the topography is steep is,

hen
e, un
lear.

Sin
e the equations are iterated in time,

the interpolation 
an be very damaging to

the 
onservation properties of the 
ow (mass

or energy). That is why modelers have to

use high order interpolation s
hemes (
u-

bi
 or more). Nonetheless, the interpolation

te
hnique is usually responsible for a large

numeri
al dissipation, diÆ
ult to minimize.

On the other hand, these models 
an run

without expli
it eddy-vis
osity or di�usivity.

Proponents of the semi-Lagrangian method

never fail to mention that their models run

without expli
it numeri
al vis
osity, whereas

opponents note that semi-Lagrangian mod-

els o�er no 
ontrol over this impli
it vis-


osity. Another disadvantage of the semi-

Lagrangian te
hnique when 
oupled to the

semi-impli
it or impli
it method is related to

the same argument against the semi-impli
it

and impli
it methods. Namely, that too

large a time-step distorts the physi
al pro-


esses and misrepresents the real 
as
ade of

energy.

2.2 Finite Di�eren
e Models

2.2.1 Introdu
tion

The order of a �nite-di�eren
e (FD) model

is given by a Taylor series expansion of the

numeri
al formulation. For instan
e, the �rst

derivative of � given by a three point (equally

spa
ed) formula

��

�x

(x

i

) =

�

i+1

� �

i�1

2�x

+O(�x

2

) (2.17)

ensures a se
ond order a

ura
y. This means

that if resolution is doubled, a

ura
y in-


reases by a fa
tor of 4. Higher order formu-

lations are possible (Dietri
h et al., 1993),

but most FD o
ean models use se
ond or-

der s
hemes. In more than one dimen-

sional problems, the best a

ura
y is ob-

tained by using Cartesian-like grids (this in-


ludes 
urvilinear grids). And if there is

any stret
hing of the grid, a 
hange of less

than 5% to 10% in size is usually re
om-

mended between two neighboring 
omputa-

tional 
ells.

When �nite di�eren
e models make use of

Cartesian-like grids, a 
omplex 
oastline is

represented by a series of arti�
ial \steps".

More pre
isely, where the orientation of the

boundary does not 
orrespond to that of the

grid, dis
retization of the boundary intro-

du
es a series of arti�
ial \steps" along the


oast (see Fig.2.1). Curvilinear models exist

that tend to follow the 
oastline, but they

usually fail as soon as the 
omplexity of the


oastline is too large (too many 
apes and

bays). A dramati
 example is the des
ription

of straits when only few points are available

(Fig.2.2). In that situation, the strait width

must take values in a set of dis
rete numbers

at the pri
e of misrepresenting the width and

therefore the ex
hange of water masses. We

are 
on
erned with the issue of 
oastline rep-

resentation in FD models and, parti
ularly,

we want to investigate the a

ura
y of FD

models in presen
e of step-like lateral walls.

These steps 
an be viewed as singularities

(tips of land) around whi
h the o
eani
 
ur-

rents 
ow. A question therefore arises 
on-


erning the in
uen
e of resolution versus the

in
uen
e of steps; the smaller the grid 
ell,

the larger the number of steps along a 
oast-

line. It is then not 
lear whether the solution

be
omes more a

urate (due to higher pre
i-

sion in the interior) or less a

urate (due to

an in
reased number of singularities or steps

along the boundaries). If the model solution

is less a

urate with in
reasing resolution in

presen
e of steps means that the model for-

mulation be
omes in
onsistent in presen
e of

steps. This may o

ur be
ause FD models

are made to be 
onsistent in open or 
losed
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re
tangular domains but are not ne
essar-

ily in the more general 
ase of irregular do-

mains. In parti
ular, we raise the problem

of the 
omputation of the adve
tive and vis-


ous terms in presen
e of steps. On the other

hand, 
onsisten
y should apply to the linear

invis
id SW models.

Model Boundary

Real Boundary

Discretized strait

Real strait

Figure 2.2: E�e
t of a poor resolution on the ge-

ometry of a strait. This one is widened by about

100%. Straits are of great importan
e be
ause

they 
ontrol the ex
hange of water between two

o
ean basins.

The same problem arises in the verti
al

dis
retization of the topography in three-

dimensional FD models of the o
ean. In

models of Bryan-Cox type (Bryan, 1969)

based on the primitive equations, the verti
al

axis is dis
retized at various 
onstant depths.

They are 
alled leveled or z-
oordinate mod-

els. In these models, the topography follows

a step-like representation and therefore they

are prone to problems similar to the ones

mentioned above. For instan
e, the equiv-

alent diÆ
ulty in z-
oordinate models to the

des
ription of straits is the des
ription of

sills. The depth of sills or other important

topographi
al features has to be taken from

a set of dis
rete depths. It was early real-

ized that this step-like representation had

detrimental e�e
ts on the overall 
ir
ula-

tion. For instan
e, z-
oordinate models have

meridional 
ir
ulations whi
h are known to

be sensitive to the details of how the bot-

tom boundary is represented. The issue is

that they do not a

urately adve
t denser

waters along slopes and overestimate diapy-


nal mixing (Gerdes, 1993; Roberts et al.,

1996; Roberts and Wood, 1997). Di�erent

strategies were proposed to 
ir
umvent the

problem. The �rst strategy was to 
hange

the verti
al 
oordinate, z, to a following ter-

rain 
oordinate, � (Phillips, 1957; Blumberg

and Mellor, 1983). But �-
oordinate mod-

els en
ounter other known limitations, su
h

as pressure gradient errors and arti�
ial di-

apy
nal mixing. A se
ond strategy is to use a

layered (or �-
oordinate) model (Ble
k, 1978;

Ble
k and Boudra, 1981). Roberts et al.

(1996) 
ompared the behavior of the sim-

ulated North Atlanti
 in a z-model and in

an isopy
nal model (�-model). In parti
u-

lar, they noted that the z-model has more

trouble in representing a realisti
 out
ow

from the Greenland basin (GIN). Roberts

and Wood (1997) extended the study by sys-

temati
ally studying the e�e
t of modifying

the topography of the sill at the out
ow of

GIN and noted the high sensitivity of the

model. The same observation was made by

Winton (1997) in a more idealized geome-

try of the North Atlanti
. Winton et al.

(1998) �nally demonstrated that it is a res-

olution problem. When the resolution was

high enough to resolve the bottom boundary

layer and to resolve the slope, the 
ow is re-

alisti
 enough. However, the required resolu-

tion is unrealisti
 even for modern z-models;

therefore, they re
ommended the use of ex-

pli
it bottom boundary layer models or the

use of isopy
nal models (although those ones

have also their own limitations, namely re-

lated to the isopy
nal layers interse
ting the

topography or the surfa
e.) From a di�er-

ent perspe
tive, Hirst and M
Dougall (1996)

noted that, in 
oarse resolution z-models,

the Gent and M
Williams (1990) turbulen
e

s
heme remarkably enhan
es the 
onserva-

tion of water properties along topographi-


al slopes. Another approa
h was proposed

by Ad
roft et al. (1997). They showed in-

teresting use of \shaved" 
ells in z-models.

The topography is then pie
ewise linear, in-

stead of being pie
ewise 
onstant as in usual

z-models.

All these diÆ
ulties in representing 
ows

along sloping topography should warn us of

possible problems for the horizontal 
ir
ula-

tion in the presen
e of step-like 
oastlines.

Using a shallow water model, S
hwab and

Beletsky (1998) found that a Kelvin wave

moving along a 
oastline is sensitive to the

presen
e of steps. The steps have mainly a

retardation e�e
t on the wave, the e�e
t di-

minishing with higher resolution. These re-

sults are reprodu
ed in Figure 2.3 using the

C-grid model of Se
tion 2.2.2. Four grids

in total were used: two grids with no rota-

tion of the basin showing no step along the

boundaries at 10 and 5 km resolution and

two grids with a 30 � o rotation of the basin
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Real Boundary

Model Boundary

Figure 2.1: E�e
t of the rotation on the dis
retization of a square domain. When the sides are no

more aligned with the dis
retization axis, step-like features o

ur along the walls.

relative to the dis
retization axes showing

steps along the walls at also 10 and 5 km

resolution. That higher resolution de
reases

the retardation e�e
t is 
onsistent with the

idea that Kelvin waves should not be sensi-

tive to 
oastline details, at s
ales small 
om-

pared to the Rossby radius of deformation.

In Figure 2.3, for the highest resolution runs

(5 km), the retardation e�e
t is still no-

ti
eable but it is mu
h weaker 
ompared to

the runs at 10 km resolution. Sin
e the ra-

dius of deformation is 31 km in these runs,

these results imply that we should resolve

the Rossby radius with about ten points for

a se
ond order formulation. This retarda-

tion e�e
t was also noted in 
ir
ular lakes

by Beletsky et al. (1997) for di�erent kinds

of staggering of the grid and verti
al repre-

sentations. One 
onsequen
e for modelling

the o
ean is that the fast modes of an o
ean

basin (the Kelvin modes) will be misrepre-

sented, espe
ially if the model resolution is


oarse. Therefore, transient responses of the

o
ean, su
h as the El-Ni~no Kelvin wave along

the Western Ameri
a may be retarded, whi
h

may have 
onsequen
es on the period of o
-


urren
es of El-Ni~no events a

ording to the

delayed os
illator theory (S
hopf and Suarez,

1988). For instan
e, in the study of Soraes

et al. (1999), there are only two points to

represent the Rossby radius of deformation

at 20

o

North. This means that their results

are questionable 
on
erning the 
ux and the

timing of Kelvin waves leaving the equator

and going poleward.

2.2.2 The Three Staggerings Used

To ensure stability in primitive variable or

shallow water models, the variables are usu-

ally staggered in spa
e, in the sense that

the dis
rete lo
ation of the di�erent vari-

ables may di�er. Several standard staggering

te
hniques are used in o
ean modelling: the

non-staggered A-grid (Dietri
h et al., 1993),

the B-grid (Bryan, 1969; Cox, 1984) or the

C-grid (Ble
k and Boudra, 1981; Blumberg

and Mellor, 1983), as illustrated in Fig. 2.4.

The A-grid leads to spurious modes of os-


illation, fed by non-linear intera
tions and

round-o� errors. These spurious modes are

ultimately unstable, but the A-grid 
an be

stabilized if higher order formulations are

used. The B-grid has better dispersion errors

at 
oarse resolution for propagating plane-

tary or Rossby waves than C-grid, and does

worse for pure gravity waves (Batteen and

Han, 1981).

FD models 
an be formulated to 
on-

serve energy and/or enstrophy (Arakawa,

1966; Sadourny, 1975; Abramopoulos, 1988;

Arakawa and Hsu, 1990; H�olm, 1996). For

instan
e, it is relatively easy to formulate

an A-grid energy 
onserving model, from

the point of view of the �nite volume (FV)

method. But 
onserving the energy exa
tly

only retards the o

urren
e of spurious nu-

meri
al noise (this model is detailed in Ap-

pendix A). If the model was also enstrophy


onserving (whi
h, a

ording to Abramopou-

los, 1988, is a
hievable but very expensive),

the o

urren
e of spurious numeri
al noise

would be even more diÆ
ult and hen
e, the

model would be stabilized.
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a b


 d

Figure 2.3: Elevation �eld for the Kelvin retardation problem in presen
e of steps along the walls

at two di�erent resolutions. � represents the rotation angle of the grid relative to the dis
retization

axes. a, 10 km, � = 0; b, 10 km, � = 30

o

; 
, 5 km, � = 0; d, 5 km, � = 30

o

. The dashed line is the

-0.01 m 
ontour, the solid lines are 
ontours from 0.1 to 1.0 m with an in
rement of 0.1 m.
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A B

C

Figure 2.4: The three major horizontal stagger-

ings for the primitive equations. Left the A-grid,


enter the B-grid, right the C-grid. Velo
ities


omponents are lo
ated by the arrows, the pres-

sure or elevation point is lo
ated by a grey disk.

The C-grid Formulation

The C-grid derived models, su
h as the

popular POM family of models developed

from Blumberg and Mellor (1983), tend to

be used preferentially for high-resolution re-

gional studies. The C-grid FD model used in

this thesis is the one formulated by Sadourny

(1975). This model is enstrophy 
onserving.

The nonlinear terms are split into a gradi-

ent term and a rotational term. To simplify

the following dis
ussion, we leave the time

derivative being 
ontinuous. Using standart

notation, the dis
retized shallow water equa-

tions are

�

t

u� q

y

V

x

y

+D

�

x

B =

�

x

h

x

+ F

x

(2.18)

�

t

v + q

x

U

x

y

+D

�

y

B =

�

y

h

y

+ F

y

(2.19)

�

t

� +D

+

x

U +D

+

y

V = 0 . (2.20)

The dis
retized potential vorti
ity is given by

q = (f + �)=h

x

y

where � = D

�

x

v � D

�

y

u is

the relative vorti
ity. The dis
retized mass


uxes are given by U = uh

x

, V = vh

y

,

the dis
retized Bernouilli fun
tion is given by

B = g�+

1

2

(u

2

x

+v

2

y

) and F

x

and F

y

are the

vis
ous for
es. The o�-
entered di�eren
ing

operators in the x dire
tion are de�ned by

D

�

x

� =

�

ij

� �

i�1;j

�x

,D

+

x

� =

�

i+1;j

� �

ij

�x

;

and the averaging operator de�ned by �

x

is a

double point average =

1

2

(�

ij

+ �

i�1;j

). Sim-

ilar de�nitions apply along the y dire
tion.

(2.18), (2.19) and (2.20) ensure a se
ond or-

der a

ura
y to the 
omputation of the ve-

lo
ity and elevation �elds. The kinemati


boundary 
ondition is no normal 
ow and the

dynami
 boundary 
ondition is free-slip, un-

less otherwise spe
i�ed. The C-grid model,

in whi
h the non-linear terms have been split

into a rotational part and a gradient part,

requires that vorti
ity be spe
i�ed at bound-

ary points. We set the relative vorti
ity to

zero along the model boundary, whi
h is 
on-

sistent with the free-slip boundary 
ondition

along straight walls.

The B-grid

The B-grid is employed in the popular MOM

family of o
ean models. The MOM model

is a z-model and was developed from Bryan

and Cox (1967) and Bryan (1969) and fol-

lowing investigators. The B-staggering suits

more naturally the no-slip boundary 
ondi-

tion, sin
e the velo
ity points are lo
ated at

the 
orners of the 
omputational 
ell. Unlike

the C-grid, there are no ambiguities in the

way the dynami
al boundary 
ondition is im-

posed at tips of the 
ontinents. The B-grid

is also well known for having a better disper-

sion relationship for Rossby waves at very


oarse resolution than does the C-grid (Bat-

teen and Han, 1981). This makes this stag-

gering te
hnique more suitable for 
oarsely-

resolved global 
limate studies. However, we

are interested in how this 
on�guration be-

haves in the presen
e of steps along the walls.

From Cox (1979), it appears that the B-grid

model under the no-slip boundary 
ondition,

just as the C-grid (Ad
roft and Marshall,

1998), is not very sensitive to the presen
e

of lateral steps, therefore, we prefer to fo
us

on the behavior of the B-grid model with a

free-slip boundary 
ondition.

On the B-grid, the dis
retized shallow wa-
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ter equations be
ome

�

t

u+ uD

o

x

u+ vD

o

y

u

�fv + g D

�

x

�

y

=

�

x

h

x

y

+ F

x

(2.21)

�

t

v + uD

o

x

v + vD

o

y

v

+fu+ g D

�

y

�

x

=

�

y

h

x

y

+ F

y

(2.22)

�

t

� +D

+

x

U

y

+D

+

y

V

x

= 0 (2.23)

where U = uh

x

y

, V = vh

x

y

. The di�eren
-

ing operator D

o

x

(and D

o

y

in the similar way)

are de�ned by

D

o

x

� =

�

i+1;j

� �

i�1;j

2�x

.

Eq. (2.21) and (2.23) ensure a se
ond or-

der a

ura
y to the numeri
al solution. The

diÆ
ulty when applying the free-slip bound-

ary 
ondition to a B-grid model is that it

requires a prognosti
 equation for the velo
-

ity 
omponent tangential to the wall (in the

more general situation of a irregular geom-

etry, the B-grid would require equations for

velo
ity nodes at tips of land-
ells). There-

fore we use,

�

t

u

s

+ u

s

D

o

s

u

s

+ g D

�

s

�

�

=

�

x

h

�

s

+F

s

(2.24)

where s represents the tangential dire
tion,

and �

�

, the elevation point along the wall

at half a point from the 
onsidered velo
ity

node.

The A-grid

The argument behind using an A-grid 
on-

�guration is that the C-grid presents the dis-

advantage of separate lo
ations for u and

v-
omponents of the velo
ity. This means

that, at 
oarse resolution, the trun
ation er-

rors in the 
omputation of the Coriolis terms


an be fairly large. A

ording to Ad
roft

et al. (1998), these errors trigger numeri
al

noise when the Rossby radius is not well re-

solved. From a programming point of view,

having all the variables lo
ated at the same

points makes everything easier (physi
al pa-

rameterizations, 
onservative FV formula-

tion, graphi
 output, ...). The A-grid ar-

rangement of the variables is known to be an

unstable se
ond order formulation. Nonethe-

less, it is possible to run an A-grid model if

all the terms are a

urate at fourth order. A

high-order method is 
ost e�e
tive in terms

of a

ura
y (Sanderson, 1998), as long as the

physi
al pro
esses are resolved and the spe
-

trum of the resolved �elds is steep enough.

Dietri
h et al. (1993), hereafter D93, de-

veloped su
h a model. The model is three-

dimensional and uses a no-slip boundary 
on-

dition. We modify the model to represent the

shallow water equations, keeping the fourth

order formulation for all the terms (ex
ept

the di�usion), and we in
orporate the free-

slip boundary 
ondition. All the equations

are prognosti
 and integrated expli
itly in

time using a 4th order Runge-Kutta s
heme.

On an A-grid and using the same notation,

the shallow water equations lead to

�

t

u+ uD

4;x

u+ vD

4;y

u

�fv + g D

4;x

� =

�

x

h

+ F

x

(2.25)

�

t

v + uD

4;x

v + vD

4;y

v

+fu+ g D

4;y

� =

�

y

h

+ F

y

(2.26)

�

t

� +D

4;x

(uh) +D

4;y

(vh) = 0 (2.27)

The di�eren
ing operators, D

4;x

and D

4;y

,

are fourth order operators. Equations 2.25{

2.27 ensure a fourth order a

ura
y to the nu-

meri
al solution, ex
ept for the vis
ous terms

F

x

and F

y

, whi
h remain se
ond order. The

diÆ
ulty with the A-grid at fourth order is

to retain the fourth order right to the wall.

This is possible only if o�-
entered di�eren-

tiation formulae and interpolation are used.

If this is not done, the model tends to be un-

stable with free-slip boundary 
onditions (as

demonstrated in the next 
hapter.)

2.3 Finite Element Models

2.3.1 Introdu
tion

In this se
tion, we present several �nite ele-

ment (FE) models, all based on triangular el-

ements. The development of the FE method

was 
ontiguous to the development of 
om-

puters in the early 60s and 70s. By the end

of 70s, they were well established. They be-


ame parti
ularly popular in engineering for
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the 
omputation of stresses over stru
tures,

and somewhat popular in 
uid me
hani
s

and ele
tri
ity. In all 
ases, they were and

are still used be
ause of the great 
exibility

they o�er in term of geometri
al representa-

tion, sometimes despite the 
ost or the la
k

of stability of the method. In stru
tural me-


hani
s, they have the de
isive advantage of

being able to follow the deformation of the

mesh due to stress (Lagrangian time formula-

tion), making the methods quite \natural" to

this �eld. In ele
tri
ity, the absen
e of non-

linear terms in most appli
ations render the

method reasonably su

essful. But in 
uid

me
hani
s, the method has always su�ered

from a la
k of overall stability, from a la
k of

a

ura
y in the 
omputation of the adve
tive

terms and from a very large 
ost, to the point

that most 
ommer
ial models used for en-

gineering appli
ations preferentially use the

�nite volume (FV) method along with near

regular meshes (
.f., IDEAS, Star-CD, ...).

The disadvantage of the FV methods is that

they are usually of low order and that they

require near regular meshes to ensure good

performan
es. This means that they are not

very suitable to model the o
ean.

The problem of stability in FE meth-

ods in 
uid me
hani
s was early analized

by Ladyzhenskaya (1969), Babouska (1971)

and Brezzi (1974), who gave their names to

the so-
alled Ladyzhenskaya, Babouska and

Brezzi (LBB) stability 
ondition. Their work

fo
uses on the Stokes equations and they

demonstrated the need, in 
uid me
hani
s

FE methods, for using di�erent basis fun
-

tions for the velo
ity and pressure. This was

equivalent to staggering the grid in spa
e, as

was done for the FD methods. Furthermore,

not any 
ombination of basis fun
tions satis-

�es the LBB 
ondition (Fortin and Fortin,

1985; Pierre, 1988; Idelsohn et al., 1995;

Le Roux et al., 1998). Arnold et al. (1984)

and Fortin and Fortin (1985) emphasized

that one simple way to stabilize equal-order

s
hemes is to add the so-
alled bubble fun
-

tion, and that this method does not lead ne
-

essarily to an additional 
ost, thanks to stati



ondensation te
hniques (some easy manual

Gaussian elimination before solving numer-

i
ally the matrix problem). But, sin
e, a
-


ording to Pierre (1988), these methods are

equivalent to adding a penalty term in the


uid equations, they may be over-dissipative

in the 
ontext of unsteady 
ows and the more

general Navier-Stokes equations.

Mainly, the LBB 
ondition 
omes down

to in
reasing the order (or the number of

degrees of freedom) of the basis fun
tions

for the velo
ity 
ompared to the basis fun
-

tion for the pressure. However, one unre-

solved issue related to the LBB 
ondition is

its relevan
e for the shallow water equations.

The three shallow water equations are sim-

ilar enough that they 
an be generalized to

one ve
tor equation:

�V

�t

+

�F

�x

+

�G

�y

= H (2.28)

where V = (uh; vh; h)

t

, F = (uuh +

gh

2

=2; uvh; uh)

t

, G = (uvh; vvh+gh

2

=2; vh)

t

and H in
ludes the Coriolis, dissipation and

for
ing terms. Therefore, there is no intuitive

reason for lowering the order for one variable


ompared to the others. The only loss of sim-

ilarity between these equations 
omes from

the boundary 
onditions whi
h only apply to

the velo
ity. This is however a slight loss of

similarity whi
h only applies to the elements

sharing a fa
e or a vertex with the bound-

ary. Hen
e, the need for lowering the order

for pressure may not apply to all elements of

the mesh. There is eviden
e, however, that it

is better to use a 
ombination of basis fun
-

tions that ful�lls the LBB 
ondition, even

in the broader 
ontext of the shallow water

equations (Le Roux et al., 1998). Our own

experien
e pinpoints that the behavior of the

solution depends on the appli
ation. We are

de�nitely missing a general theory of stabil-

ity for the FE approximation in the broader


ontext of the shallow water equations.

The fa
t that the pressure basis fun
tions

have to be of lower order 
ompared to the ve-

lo
ity basis fun
tions means that the overall

trun
ation order of the stabilized FE meth-

ods for the shallow water equations is proba-

bly lower than the one permitted by the ve-

lo
ity basis fun
tions. And, sin
e the other

disadvantage of these stable FE methods is

the 
umbersome and time 
onsuming solving

of a large matrix problem (espe
ially when

all the variables are 
oupled), it is doubtful

that these methods 
an 
ompete with todays

FD o
ean models in terms of 
ost and a

u-

ra
y.

We fo
us herein on four di�erent FE mod-

els: the Lyn
h and Werner model (1987;

1991) (also 
alled the Quoddy model and the
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Figure 2.5: Triangulation of the domain.

only one of the four used for 
oastal o
eanog-

raphy), the Le Roux et al. (2000; hereafter

LLS) model, the Hua and Thomasset (1984)

model and the Peraire et al. (1986; here-

after PZM) model. Only one model, the LLS

model, among the four satis�es the LBB 
on-

dition of stabilty. The Quoddy and the PZM

models use a non-staggered (i.e., equal order)

formulation of the variables and therefore re-

quire some kind of stabilizing \tri
k" whi
h

we will present and dis
uss. Due to their

equal-order formulation, these two models

are the simplest, in some sense, of the four

for the same reason that the A-grid FD for-

mulation is simpler than the other stagger-

ing te
hniques. In the 
ontext of the �nite

elements, there are some additional te
hni-


al advantages to using non-staggering for-

mulations whi
h stems from a lower number

of matri
es to de�ne and to inverse. Also,

it uni�es the use of gradient or divergen
e

operators. In general, equal-order models

are fairly easy to implement from s
rat
h.

Hen
e, they 
an be more appealing than

more 
omplex LBB 
omplying formulations.

2.3.2 The Galerkin Formulation

Most FE methods are based on the Galerkin

formulation. In these models, the domain, 
,

is broken up into a set of 
onformal elements

(
onformal in the sense that all elements 
on-

ne
t to neighboring elements through 
om-

mon verti
es). The form of the elements is

rather unspe
i�ed but triangles or quadran-

gles are usually re
ommended. We favor the

use of triangles (Fig. 2.5) be
ause 
omplex

domains are more easily divided into trian-

gles than quadrangles. For ea
h vertex of the

mesh, M

i

, and in the 
ontext of linear �nite

elements, there is an asso
iated basis fun
-

0

0

+1

0

0

iM

Figure 2.6: �

i

, the basis fun
tion related to

the node M

i

.

tion, �

i

. This basis fun
tion is pie
ewise lin-

ear in ea
h triangle to whi
hM

i

belongs and

forms a \hat" on top of M

i

(Fig. 2.6). Over

the rest of the domain, the basis fun
tion is

zero. Let us 
onsider the equation

�u

�t

= �

�u

�x

. (2.29)

u 
an be approximated by û =

P

j

û

j

�

j

. The

�nite element approximation of this equa-

tion 
onsists on multiplying 2.29 by a test

fun
tion and then integrating the resulting

equation over the whole domain. There is a


ertain freedom upon the 
hoi
e for the test-

fun
tion, though. In the 
ollo
ation method,

the test-fun
tion is de�ned as the Æ(x � x

i

)

(the Dira
-delta fun
tion). Then, the formu-

lation bares similarities to the FD method.

If both the basis fun
tions and the test-

fun
tions are pie
ewise 
onstant, the formu-

lation is similar to the FV method. The

Galerkin approximation is to take for the

test-fun
tion, �

i

, whi
h is used to approx-

imate u. Thus, the dis
retized version of

(2.29) is

X

j

�û

j

�t

h�

j

; �

i

i = �

X

j

û

j

h

��

j

�x

; �

i

i .

(2.30)

where h:; :i is the inner produ
t de�ned as

hf; gi =

R




fgds. This is equivalent to say

that the errors generated when dis
retizing

(2.29) are proje
ted onto another subspa
e

of the fun
tion spa
e (supposedly, a higher
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0 B

x

2

1

φ

-A

Figure 2.7: �

2

is the basis fun
tion related

to the node x

2

= 0.

degree polynomial subspa
e). This formu-

lation is said to be \weak" and is also re-

ferred to as the weighted residual approa
h.

In some parti
ular 
ases, it 
an be shown

that the model equations 
an be des
ribed

by a fun
tional. This leads to the so-
alled

variational prin
iple. In su
h a 
ase, the

Galerkin approximation minimizes the ap-

proximation errors. Sin
e the pie
ewise lin-

ear basis fun
tions, �

i

, are not orthogonal,

the terms h�

j

; �

i

i lead to a matrix that has

to be solved at ea
h iteration in order to ad-

van
e the solution in time. This matrix is

usually referred to as the mass matrix and

noted M. M is usually non-diagonal, but

sparse. In order to gain 
omputational ef-

�
ien
y, M is sometimes \lumped"; that is,

all non-diagonal terms are summed onto the

diagonal to form an arti�
ial diagonal mass

matrix. This method bears similarities with

the 
ollo
ation method, as opposed to the

Galerkin method, and 
an lead to a loss in

a

ura
y.

We now 
onsider the issue of using irregu-

larly spa
ed grid points in FD and FE meth-

ods. In the FD method, an irregular spa
ing

of the nodes leads to a loss of order. Let us


onsider the equation

u =

df

dx

(2.31)

Imagine three nodes lo
ated along one axis.

The length between Node 1 and node 2 is

A, and node 2 and node 3 are distan
ed by

B. Without loss of generality, we 
an impose

x

1

= �A, x

2

= 0 and x

3

= B (Fig. 2.7). The

usual 
entered FD dis
retization of (2.31) at

x

2

gives

u

2

=

f

3

� f

1

A+B

(2.32)

As f

1

= f

2

� A

df

dx

(x

2

) + A

2

d

2

f

dx

2

(x

2

) + O(A

3

)

and f

3

= f

2

+B

df

dx

(x

2

)+B

2

d

2

f

dx

2

(x

2

)+O(B

3

),

u

2

=

f

3

� f

1

A+B

=

df

dx

(x

2

)

+(B �A)

d

2

f

dx

2

(x

2

) +O(A

2

+B

2

)

(2.33)

This formulation is se
ond order if A = B

but only �rst order if A 6= B.

The same o

urs for the FE method. Us-

ing linear \hat" fun
tions to dis
retize this

axis, the Galerkin dis
retization of (2.31)

with the basis fun
tions at node 2 as the test

fun
tion

hu; �

2

i = h

df

dx

; �

2

i (2.34)

leads to

A (u

1

=6 + u

2

=3) +B (u

3

=6 + u

2

=3) =

1=2(f

3

� f

1

)

(2.35)

where u and f are now approximated by

û =

P

i=1::3

u

i

�

i

and

^

f =

P

i=1::3

f

i

�

i

. To

demonstrate the problem of using irregular

spa
ing, we use a di�erent approa
h whi
h


onsists of using polynomials of in
reasing

order that satisfy (2.31). The maximum or-

der for whi
h (2.35) is 
onsistent gives the

trun
ation order of the s
heme. If we take

f(x) = 1 and u(x) = 0, (2.35) is exa
tly sat-

is�ed. If we take f(x) = x and u(x) = 1, the

same applies. But if we take f(x) = x

2

and

u(x) = x, the equality is no longer true for

the general 
ase of A 6= B, whi
h means that

the numeri
al method is only �rst order when

the spa
ing is not 
onstant. Therefore, we

expe
t the order of any FE and FD method

to be redu
ed in the presen
e of unstru
tured

meshes.

2.3.3 The Di�erent Finite Element

Models Tested

The Quoddy Model

The Quoddy model of Lyn
h and Werner

(1987; 1991) is a full 3D baro
lini
 �nite ele-
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ment model. This model was su

essfully ap-

plied for 
oastal and tidal studies on the S
o-

tian Shelf (Hannah et al., 2000) and the Van-


ouver Island area (Foreman et al., 2000).

It was modi�ed to model the shallow water

equations, retaining the main 
hara
teristi


of the Quoddy model, whi
h are: equal order

of approximation for velo
ity and elevation,

the divergen
e of the verti
ally integrated

momentum equations 
an be re
ast by us-

ing the mass balan
e equation and eliminat-

ing the divergen
e of the verti
ally integrated

mass 
ux. This yields a prognosti
 equation

for the elevation of se
ond order in time (a

wave equation). Solving numeri
ally for the

three equations (two momentum equations

and one wave equation) is easy and leads to

a stable model, but, does not balan
e mass

lo
ally. To guaranty a better lo
al 
onser-

vation of mass, a weighted mass equation is

added to the wave equation (the mass equa-

tion 
an also be viewed as a penalty term).

�

2

�

�t

2

�r � [r � (Huu) + gHr� + f�Hu

�F

w

� �r

2

u

�

+ �

0

�

��

�t

+r:(Hu)

�

= 0

(2.36)

The rational for mixing two equations that

should be satis�ed independently is that

equal-order FE methods are usually unsta-

ble, the same way that the non-staggered

A-grid is usually unstable for FD methods.

Hen
e, the model is stabilized using physi
al

prin
iples (the divergen
e of the momentum

equations) at the pri
e that the lo
al mass

balan
e is not ne
essarily satis�ed. This

may have some in
uen
e on the dynami
s of

o
eani
 
ows.

The Peraire et al. (1986) Model

PZM developed an interesting model us-

ing equal-order interpolation and a two step

expli
it time-integration. First, mean val-

ues are 
omputed for ea
h triangle 
entroid

from 
uxes at verti
es and then values at

verti
es are 
omputed from 
ux 
omputed

at triangle 
entroids. This model is part

of a broader family of Taylor-Galerkin for-

mulations. We reprodu
e the demonstra-

tion about the Taylor-Galerkin formulation

of Priestley (1992). Starting from the fol-

lowing prognosti
 equation in a 
onservation

form

�u

�t

+r � F = 0 , (2.37)

the idea is to in
rease the a

ura
y of the

�nite di�eren
ing of the time operator by use

of a Taylor's series:

u

n+1

= u

n

+�t

�u

�t

n

+

1

2

�t

2

�

2

u

�t

2

n

+ � � � .

(2.38)

By substituting the original equation (2.37)

in the Taylor's series and trun
ating the se-

ries after the se
ond order term yields

u

n+1

= u

n

��tr�F

n

+

1

2

�t

2

r�

�

�F

�u

n

r � F

n

�

.

(2.39)

The Galerkin formulation of this equation in

a weak form is

hu

n+1

� u

n

; �

i

i = ��thr � F

n

; �

i

i

�

�t

2

2

�

h

�F

�u

n

r � F

n

;r�

i

i

+

Z

bd

r � F

n

�F

�u

n

� n �

i

dl

�

(2.40)

where u and F are dis
retized using the

pie
ewise linear basis fun
tions. The dif-

�
ulty at this stage is to express �F=�u.

One way found by PZM was to approximate

�F=�u by a pie
ewise 
onstant fun
tion and

to express the one-step time integration as a

two step time integration. Thus, if we �rst

integrate forward in time over half a time

step

hu

n+1=2

e

; �

e

i = hu

n

; �

e

i �

�t

2

hr � F

n

; �

e

i ,

(2.41)

where �

e

is the pie
ewise 
onstant basis fun
-

tion (one over one triangle and zero over the

rest of the domain; the variables with the

unders
ript e are approximated using these

basis fun
tions). The Taylor development of

F

n+1=2

at �rst order

F

n+1=2

� F

n

�

1

2

�t

�

�F

�u

r � F

�

n

(2.42)

leads to the approximation

�

�F

�u

r � F

�

n

=

�(F

n+1=2

� F

n

)

�t

2

. (2.43)
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Sin
e the term on the left hand side is ap-

proximated using pie
ewise 
onstant basis

fun
tions, (2.41) be
omes

hu

n+1

� u

n

; �

i

i = �t

h

h�r � F

n

; �

i

i+ hF

n+1=2

e

� F

n

e

;r�

i

i

�

Z

bd

(F

n+1=2

e

� F

n

e

) � n �

i

dl

�

.

(2.44)

In fa
t, we 
an integrate by part the �rst

term on the right hand side in order to fur-

ther simplify the equation

hu

n+1

� u

n

; �

i

i = �t

h

hF

n+1=2

e

� F

n

e

+ F

n

;r�

i

i

�

Z

bd

(F

n+1=2

e

�F

n

e

+ F

n

) � n �

i

dl

�

.

(2.45)

Be
ause of the use of linear basis fun
tion the

�rst produ
t in this equation 
an be further

simpli�ed to

hu

n+1

� u

n

; �

i

i = �t

h

hF

n+1=2

e

;r�

i

i

�

Z

bd

(F

n+1=2

e

�F

n

e

+ F

n

) � n �

i

dl

�

.

(2.46)

This method presents some similarities with

the Lax-Wendro� s
heme. It is se
ond or-

der for smooth problems but might be over-

dissipative at sho
ks. For purely adve
tive

problems, PZM found that this formulation

behaves very well and we found that it out-

performs the Quoddy model (not shown).

The Hua and Thomasset (1984) Model

Hua and Thomasset (1984) developed a �-

nite element model staggered in spa
e, using

dis
ontinuous linear non 
onforming (P

NC

1

)

basis fun
tions for the velo
ity (Fig. 2.8) and

the usual linear basis fun
tions (P1) for the

pressure. This formulation leads to a diag-

onal mass matrix for velo
ity, whi
h leads

-1

+1

-1

Figure 2.8: The dis
ontinuous linear non


onforming basis fun
tion for the P

NC

1

� P

1

element of Hua and Thomasset (1984) asso
i-

ated with ea
h fa
e. The basis fun
tion takes

the value of 1 over the fa
e and -1 at the op-

posite verti
es.

to a simpli�ed matrix problem to solve for

the elevation when semi-impli
itly dis
retiz-

ing in time. They 
laim the model to be

os
illation-free, although LLS demonstrated

that the Hua and Thomasset model does not

satisfy the LBB 
ondition of stability for the

Stokes 
ow problem. In the shallow water


ontext, it shows some signs of instability

(not shown). After some tests, we 
hosed

to integrate the equations expli
itly in time

using a Runge-Kutta integration te
hnique

instead of the semi-impli
it te
hnique pro-

posed by Hua and Thomasset be
ause the

instability problem was then less severe.

The Le Roux et al. (2000) Model

LLS proposed to use a semi-impli
it semi-

Lagrangian time integration along with a

spatial FE dis
retization that satis�es the

LBB stability 
ondition. The parti
ularity of

their 
hoi
e for the basis fun
tions resides in

using ma
ro-elements. Ea
h ma
ro-elements

is 
ut into four sub-triangular elements. The

basis fun
tions for the velo
ity are linear in-

side ea
h sub-triangle and the basis fun
tions

for the pressure (or elevation) are 
onstant

(see Fig. 2.9). The equation for the elevation
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1/3

1

Figure 2.9: The dis
ontinuous 
onstant ba-

sis fun
tion for pressure over the ma
ro-

element of LLS. The ma
ro-element is 
ut

into four sub-triangular elements. There

are three pressure basis fun
tions over one

ma
ro-element, one for ea
h exterior sub-

triangle. They take the value of one over the

exterior sub-triangle and 1/3 over the inte-

rior triangle.


an be inverted lo
ally. Hen
e, the solution

of the 
oupled system of shallow water equa-

tions 
an be redu
ed to solving Helmholtz-

like 
oupled equations for the velo
ity 
om-

ponents. In order to interpolate the vari-

ables at the previous time step on an un-

stru
tured mesh, they also proposed a high

order kriging method (see Tro
hu, 1993, for a

review). Using this interpolation te
hnique,

they found that the model was performing

very well for the purely adve
tive problem.

However, the appli
ation to a �nite element

shallow water model was somewhat disap-

pointing. The high order method destabi-

lizes the model (personal 
om.). Therefore,

a low order kriging method had to be used,

leading to potentially high arti�
ial vis
osity.

The mass was not 
onserved, for
ing LLS to

add a mass 
orre
tor. Another disadvantage

of the LLS formulation is the fa
t that the

elevation basis fun
tions are pie
ewise 
on-

stant. This means that the trun
ation order

of the model for the elevation is lower than

that for the velo
ity and might lower the or-

der of the velo
ity as well, sin
e the equations

for velo
ities and elevation are 
oupled in the

shallow water equations.

2.4 The Dis
ontinuous Spe
-

tral Element Method

2.4.1 Introdu
tion

The �rst development of the spe
tral element

(SE) method o

urred in the early eight-

ies (Patera, 1984). The SE method allows

for irregular geometries and high a

ura
y

be
ause of varying order polynomials inside

quadrangles or triangles that form the mesh.

The main distin
tion between the FE and SE

methods stems from the type of basis fun
-

tions used to approximate the model equa-

tions. In FE methods, the basis fun
tions

are usually 
onstru
ted for one spe
i�
 or-

der of the s
heme (they are derived from La-

grange interpolators on regular grids inside

ea
h element). They need to be re
omputed

as the order of the FE method is modi�ed.

In SE methods, the basis fun
tions are hier-

ar
hi
al and follow easier rules of 
onstru
-

tion (for instan
e, they 
an be derived from

Chebyshev or Legendre polynomials). As the

order is augmented, the former set of basis

fun
tions is simply augmented by a new set

of polynomials 
onstru
ted from the previ-

ous set. Therefore, in SE methods, the order

of approximation is user-dependent and 
an

even vary from element to element. There

seem to be numeri
al advantages in terms

of matrix inversion in using the Chebyshev

or Legendre polynomials instead of regularly

spa
ed Lagrange interpolators. The latter

lead to poorer 
onditioned matri
es as the or-

der of the s
heme is augmented (Le Provost

and Vin
ent, 1986). As with the spe
tral

method, the a

ura
y of SE method is ex-

ponential with in
reasing polynomial order.

However, the SE method o�ers mu
h higher


exibility in terms of geometri
al representa-

tion. And, 
ontrary to the spe
tral method

for whi
h Gibbs os
illations are prone to

o

ur in under-resolved regions, in the SE

method, one 
an easily in
rease the polyno-

mial order (p-re�nement) or the number of

elements (h-re�nement) in the underesolved

regions. Using a polynomial order greater

than two, we 
an also expe
t that SE meth-

ods are more a

urate than 
onventional FD

or FE methods, and that the 
onvergen
e

of the solution with in
reasing resolution is

mu
h faster.



CHAPTER 2. PRESENTATION OF THE NUMERICAL METHODS 22

We noted two appli
ations in o
ean mod-

elling using quadrangular SE. The �rst by

Ma (1993) and the se
ond and more su

ess-

ful by Iskandarani and Haidvogel (1995). Us-

ing quadrangles, it is relatively easy to 
on-

stru
t an orthogonal basis of 
ardinal fun
-

tions whi
h greatly fa
ilitates the 
omputa-

tion of nonlinear terms and renders trivial

the matrix problem to be solved, provided

the equations are prognosti
 and solved ex-

pli
itly in time (leapfrog, Adams-Bashforth,

Runge-Kutta). One limitation, however,

of using 
ontinuous basis fun
tions for the

primitive (or shallow water) variables is that

for stability the maximum polynomial order

for approximating pressure (or elevation) has

to be lowered, 
ompared to velo
ity (Iskan-

darani and Haidvogel, 1995). Lowering the

maximum polynomial order of one variable is

similar to staggering the variables in spa
e in

�nite di�eren
e methods and is also similar

to satisfying the LBB 
ondition for �nite ele-

ment methods (see previous se
tion). On the

other hand, the method leads to a large but

sparse matrix problem if the equations are

solved impli
itly in time, or if a Helmholtz or

Poisson-type of system has to be solved. The

only disadvantage of using quadrangles 
om-

pared to triangles 
omes from the diÆ
ulty

of dis
retizing an irregular domain into quad-

rangles, the triangles o�ering more 
exibility.

Using triangles (Sherwin and Karniadakis,

1996), there is no orthogonal basis of 
ardinal

fun
tions. Therefore, a large matrix prob-

lem has to be solved at ea
h time-step, even

when the equations are dis
retized expli
itly

in time. Moreover, the 
omputation of non-

linear terms requires a tedious transfer from

the spe
tral 
oeÆ
ients to values at Gauss-

like points, and ba
k to the spe
tral spa
e.

However, in restri
ted appli
ations, re
ent

developments led to simpler and 
heaper al-

gorithms. Lomtev and Karniadakis (1999)

(hereafter referred as LK) avoid the diÆ
ult

problem of de�ning a set of 
ontinuous high

order polynomials over triangles by reverting

to a dis
ontinuous formulation whi
h leads

to a lo
al matrix problem in ea
h element-

triangle. This is only possible if all the equa-

tions are prognosti
 (as they are for shallow

water models) and treated expli
itly in time.

Lu
kily, a hydrostati
 Boussinesq o
ean with

a free-surfa
e 
an be modeled using this sim-

pli�ed spe
tral element method. Further-

more, their model appears to be stable al-

though the same set of basis fun
tions is used

for the velo
ity and pressure. Thus, their

method does not 
omply to the LBB 
ondi-

tion. Finally, this method allows for an easy

implementation of a time-variable mesh that

we introdu
e in Se
tion 2.4.3.

2.4.2 The Model Formulation

The matrix problem to be solved in ea
h ele-

ment is rather small for the order of the spe
-

tral element we 
hoose to test (between 3 to

7). Therefore, the 
onstraint of orthogonal-

ity over the set of polynomials for a 
ost-

e�e
tive model is made less stringent. Thus,

we introdu
ed an even simpler set of basis

fun
tions 
ompared to LK by simply using a

set of produ
ts of Legendre polynomials with

a triangular trun
ation.

�

i

(�

1

; �

2

; t) = L

l

(�

1

)L

k

(�

2

); l + k � n




;

(2.47)

where n




is the maximum order of the poly-

nomials and i is indexed as l runs from 0 to

n




and k runs from 0 to n




� l. The solution


an be expressed inside the element j by

f(�

1

; �

2

; t)

j

=

X

i

a

ij

(t)�

i

(�

1

; �

2

; t) . (2.48)

For the elements sharing a side with the

boundary, the proje
tion of the basis fun
-

tions onto another set of basis fun
tions

whi
h are always zero right at the bound-

ary ensures the di�erent possible boundary


onditions (no-normal 
ow, free-slip, no-slip

or invis
id)

�

0

i

= L

l

(�

1

)(L

k

(�

2

)� 1) . (2.49)

The proje
tion method 
onsists of 
omput-

ing 
oeÆ
ients in the new basis using the re-

lation

hf

0

; �

0

i = hf; �i (2.50)

whi
h satis�es a least square �t and where

f

0

=

P

i

a

0

i

�

0

i

. Sin
e the equations are ex-

pressed in terms of �

i

, the a

0

i


oeÆ
ients of �

0

i

have to be expressed in terms a

i

of �

i

. This

is straightforward using (2.49). The di�er-

ent boundary 
onditions 
an also be imple-

mented for elements sharing only one ver-

tex with the wall. In a square domain, the


onvergen
e of the a

ura
y with resolution

was seemingly good with the 
ondition im-

plemented for only elements sharing one side

with the wall. Therefore, we only impose the
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boundary 
onditions on elements sharing a

fa
e with the boundary although some tests

were done to investigate this point. Further-

more, in opposition to the 
ontinuous spe
-

tral element formulations, we stress that the

same polynomial order is used for all the vari-

ables. From our experien
e, we never en-


ounter a problem related to the stability,

ex
ept for trivial CFL problems.

1

3

2S

1

2

S

S

ξ

ξ

Figure 2.10: Lo
al non-orthogonal 
oordi-

nates in a given triangle

Figure 2.11: Example of Legendre polynomi-

als �

i

= L

2

(�

1

)L

3

(�

2

)

We apply the dis
ontinuous spe
tral el-

ement method to the dis
retization of the

shallow water equations. Using a weak

formulation and the traditional notation

of Galerkin methods, inside ea
h element-

triangle the system of equations reads:

h

�u

�t

; �

i

i = h

�

x

h

; �

i

i

�hu

�u

�x

+ v

�u

�y

� fv; �

i

i

+hg�;

��

i

�x

i �

I

g�

bd

�

i

n

x

ds

��

�

hru;r�

i

i �

I

ru

bd

� n�

i

ds

�

(2.51)

h

�v

�t

; �

i

i = h

�

y

h

; �

i

i

�hu

�v

�x

+ v

�v

�y

+ fu; �

i

i

+hg�;

��

i

�y

i �

I

g�

bd

�

i

n

y

ds

��

�

hrv;r�

i

i �

I

rv

bd

� n�

i

ds

�

(2.52)

h

��

�t

; �

i

i = huh;r�

i

i

�

I

h

bd

(u

bd

� n)�

i

ds (2.53)

where variables and parameters are given in

Table 2.1. The line-integrals are very im-

portant be
ause they alone transfer informa-

tion in and out of ea
h element. LK 
hose

to solve a lo
al Riemann problem to 
om-

pute the boundary value but this te
hnique,

being similar to an upwind method, leads

to a loss of a

ura
y. We favored the sim-

ple 
hoi
e of the mean value of both sides of

a fa
e whi
h does not a�e
t a

ura
y. The

nonlinear terms are rather expensive to 
om-

pute (30% of the 
ost at n




= 5). They

require a transformation of the lo
al spe
-

tral 
oeÆ
ients to a lo
al set of Gaussian

points used afterwards to transfer ba
k to

the spe
tral spa
e. The 
hoi
e of the right

Gaussian points is obviously important. Af-

ter a few trials, we favor the use of irregular

points on the triangle (Lyness and Jespersen,

1975; Dunavant, 1985), whi
h are unfortu-

nately only given for polynomials of degree

up to 20 (the mass matrix 
an be exa
tly


omputed for n




� 10). For higher degrees,

it is always possible to use a regular set of

Legendre-Gauss or Legendre-Lobatto points

(but at a higher 
ost sin
e these sets of points

are not optimal on the triangle). For n




= 0,

we note that the dis
ontinuous SE formula-

tion is equivalent to a FV method.

The time integration is done using a 4th

order Runge-Kutta method. Thus, using

polynomials of degree n




= 5 for instan
e,

gives a 
ertain equivalen
e between spatial

and time trun
ation errors. The spe
tral ele-

ment model is hereafter referred to as SPOC.

A 
onstant eddy vis
osity 
oeÆ
ient is

used to allow for easy 
omparisons between

models. In a dis
ontinuous spe
tral element
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model, the Lapla
ian operator of the velo
-

ity 
omponents 
annot be 
omputed dire
tly

(see LK for details). The 
omputation has to

be done in two steps. First, the gradient ten-

sor of the velo
ity is 
omputed using a weak

formulation and an integration by parts. The

mass matrix is then inverted:

h

�u

�x

; �

i

i = �hu;

��

i

�x

i+

I

u

bd

�

i

n

x

ds .

(2.54)

Se
ond, the gradient of gradient terms is


omputed in the momentum equations again

using an integration by parts. This ensures

that the gradient terms are (weakly) 
on-

tinuous between elements. Sin
e the 
om-

putation of the gradient tensor is ne
essary

for the 
omputation of the nonlinear terms,

this treatment of the di�usion terms does not

hamper the 
omputational 
ost. In 2D, it

involves the 
omputation of 4 extra-terms,

and in 3D, 9 terms. For the free-slip bound-

ary 
ondition (the one used hereafter), the

normal velo
ity 
omponent and the normal

derivative of the tangential velo
ity must

vanish at the wall (�

2

= �1). This requires

a rotation of the velo
ity 
omponents and of

the gradient tensor and a proje
tion onto the

spe
ial basis fun
tion de�ned in (2.49).

2.4.3 Adaptive Mesh Re�nement

Given the two to three orders of magnitude

di�eren
e between the s
ale of eddies and

the basin s
ale, today's global o
ean eddy

resolving models require a variable in time

and spa
e resolution. To ful�ll this 
on-

straint, not only do we need a variable in

spa
e resolution model (whi
h the FE and

SE models already o�er), but we also need

some 
exibility of the mesh in time, sin
e ed-

dies and fronts are unsteady phenomena. By

adaptive mesh re�nement, we mean that the

mesh is re�ned automati
ally as the simula-

tion goes on in regions where estimated er-

rors are the largest. The diÆ
ulty is in 
om-

puting an error estimator that determines

where to put more resolution. For FE meth-

ods using linear basis fun
tions, it is usu-

ally re
ommended to estimate the lo
al se
-

ond order derivatives of the �elds and put

more resolution where these derivatives are

the largest (Zienkiewi
z and Taylor, 1991,

p.571). Be
ause the solution is pie
ewise lin-

ear, it is diÆ
ult to estimate its se
ond order

derivatives. This usually requires the re
on-

stru
tion of the solution by a higher order

method (Zhu and Zienkiewi
z, 1990). For


ontinuous SE methods, adaptive strategies

require to estimate the slope of the spe
tral


oeÆ
ients with wave number. If there is

too mu
h energy in the high wave numbers,

the elements have to be re�ned (Mavriplis,

1994). This is a less 
omplex pro
edure than

that for FE methods. Adaptive strategies

are diÆ
ult to implement in FD models be-


ause the Cartesian grids la
k the 
exibil-

ity of irregular meshes of FE and SE meth-

ods. Some adaptive mesh strategies have

been proposed, though, in the form of nested

grids. The 
oarse grid follows the overall 
ir-


ulation while the �ner grid fo
uses on a par-

ti
ular region of interest. Both intera
ting in

a one-way or two-way fashion depending on

the models (Blayo and Debreu, 1999; Wadley

and Bigg, 1999).

From the point of view of de�ning an er-

ror estimator, the dis
ontinuous SE method

is slightly more e�e
tive. Sin
e the proposed

SE formulation allows the solution to be

dis
ontinuous between elements, a straight-

forward estimator is to 
ompute the maxi-

mum jump between elements for ea
h �eld.

Though very simple, this estimator has not

yet been found in the literature. This is

therefore our own development. On
e the

error estimator has been de�ned, the re�ne-

ment or dere�nement of the mesh is fairly


onventional and 
an be found in many text-

books, for instan
e in Zienkiewi
z and Tay-

lor (1991) at p.574. We �nally end up with

four parameters that 
ontrol the re�nement

in time (see Table 2.2). The re�nement is hi-

erar
hi
al. When a triangle is to be re�ned,

it is 
ut into four 
hildren-triangles and if the

neighboring triangles are not to be re�ned,

they are 
ut into two 
hildren-triangles in or-

der to have a 
onformal 
onne
tivity. But

if one of the two 
hildren-triangles is to be

later re�ned, their parent-triangle will be 
ut

into four, as the 
utting into two 
hildren-

triangles is only needed to 
omplete the 
on-

ne
tivity (Fig.2.12). All the re�nements of

the mesh will be kept in memory, easing the

ba
kward pro
ess of dere�nement. The CFL


ondition is updated every time the mesh is

modi�ed. The model requires a 
ertain ad-

justment time in order to smooth the jump

between elements after ea
h re�nement of

the mesh. Therefore there is a minimum

value for n


he
k

(Table 2.2) depending on
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Para-

meters

Relative

value

Fun
tion

�

1

0.01-0.03 value of the jump

above whi
h the ele-

ment is re�ned

�

2

0.001 value of the jump be-

low whi
h the ele-

ment is to be dere-

�ned

�

3

0.05-0.15 value of the jump

above whi
h the sim-

ulation is restarted

using older �elds

n


he
k

1000 number of time step

between two 
he
ks

of the jumps be-

tween the elements

Table 2.2: Re�nements parameters used in

the simulations unless otherwise spe
i�ed.

the time-step and the physi
al parameters.

Hen
e, for a time stepping simulation, the

model stops regularly to 
he
k the level of

errors, re�nes the resolution a

ordingly, in-

terpolates the �elds onto the new mesh and

then restarts with the new mesh and �elds.

In 
ontrast to steady 
ows for whi
h the so-

lution is unique (if the initial guess is 
lose

enough), the transient simulations present

the disadvantage that the solution a

ura
y

might degrade be
ause the errors are still

present in the new �elds, although the res-

olution has been improved. This justi�es

the use of �

3

, the relative jump value above

whi
h the errors have rea
hed an una

ept-

able level. If so, the model should not restart

from the present time-step but from a previ-

ously saved time-step at whi
h the level of

errors was a

eptable. The question of a

u-

ra
y of adaptive time-stepping solutions also

arises from the issue of interpolating the vari-

able �elds, sin
e the interpolation does not


onserve mass or energy.

Figure 2.12: Remeshing strategies. The tri-

angle to be re�ned is in grey.

2.4.4 Curved Spe
tral Element

Method

As we stressed in Se
tion 2.2, the representa-

tion of the irregular geometry is the weakest

point of FD methods. They represent the


oastline as step-like walls. This would be

equivalent to say that the boundary is pie
e-

wise 
onstant, i.e, dis
ontinuous. In 
on-

trast, FE methods usually represent a 
om-

plex boundary by pie
ewise linear segments.

Thus, the model boundary is C

0


ontinuous.

In order to represent a

urately a 
omplex

boundary in SE formulations, it is better

to stret
h or 
urve the element boundaries

than to in
rease the number of elements in

a region of strong 
urvature (and keep the

model boundary pie
ewise linear) as done in

FE methods. Doing otherwise results in an

in
rease in the number of elements and an

in
rease in the resolution to the point that

the 
ost of using higher order polynomials

be
omes prohibitive. It makes more sense

to take advantage of the high order to get

a boundary as smooth as possible (and try

to get rid of dis
ontinuities between pie
e-

wise segments along the boundary). This al-

lows for faster 
onvergen
e rates when the

numeri
al solution is 
ompared to analyti-


al solutions found in 
ontinuously varying


urvature domains. Furthermore, high or-

der methods tend to behave badly in the

presen
e of singularities along the boundaries

(Gibbs os
illations). This is parti
ularly true

for this dis
ontinuous SE method. In fa
t, we
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Figure 2.13: Transformation of one triangle

intro a 
urved triangle

observe in one test-experiment these os
illa-

tions lo
alized around the tip of one re
tan-

gular 
ontinent. Hen
e, a 
lear limitation of

this SE formulation lies in the presen
e of

singularities along the 
oastline. It is not so

mu
h a surprise that the high order meth-

ods tends to behave badly in the presen
e of

singularities 
ompared with low order meth-

ods. Singularities ex
ite the highest modes

of the high order methods and so, lead to

strong os
illations. In parti
ular, the adap-

tive method developed in the previous 
hap-

ter fails to 
onvergen
e in the presen
e of sin-

gularities (not shown). Therefore, the solu-

tion may 
ome from smoothing out the geom-

etry by using 
urved elements. In pra
ti
e,

the additional 
ost asso
iated with the imple-

mentation of 
urved elements in triangular

spe
tral elements limits the order of 
onti-

nuity of the model boundary. This se
tion is

devoted to the development of a 
urved spe
-

tral element model. Although 
urved spe
-

tral elements may appear natural, few details

are available in the literature about their im-

plementation. We therefore develop our own

methodology.

For a triangle with lo
al 
oordinates vary-

ing in 0 < � < 1, 0 < �; 1 � �, there is

a lo
al analyti
al transformation that trans-

forms one of the fa
es into a paraboli
 seg-

ment (Fig. 2.13):

(

�

0

= � + a��

�

0

= �+ b�� .

(2.55)

The segment is paraboli
 in the sense that

it 
an be represented by an equation whi
h

is quadrati
 in term of �

0

and �

0

. Hen
e,

we 
an represent 
urved 
oastlines as pie
e-

wise paraboli
 segments. Sin
e the 
oordi-

nate system we 
hoose for integration over

2
’

’
2

1

2

1

1

ξ

ξ

ξ

ξ

ξ

ξ

Figure 2.14: Transformation of one triangle

intro a 
urved triangle with the 
oordinate

system used in the 
omputation of the inte-

grals

the triangle (Fig. 2.14) is (�

1

, �

2

), the exa
t

transformation is

8

>

<

>

:

�

0

1

= �

1

�

b

2

(�

2

1

+ �

1

+ �

1

�

2

+ �

2

)

�

0

2

= �

2

+

a+ b

2

(�

2

1

+ �

1

+ �

1

�

2

+ �

2

) .

(2.56)

The Ja
obian matrix J of this transforma-

tion is needed for 
omputing the integrals

J =

�

J

11

J

12

J

21

J

22

�

with

8

>

>

>

>

<

>

>

>

>

:

J

11

= 1 �b (�

1

+ 1=2 + 1=2 �

2

)

J

12

= �b=2 (�

1

+ 1)

J

21

= (b+ a) (�

1

+ 1=2 + 1=2 �

2

)

J

22

= 1 +(b+ a)=2 (�

1

+ 1) .

(2.57)

For instan
e the 
omputation of the mass

matrix M be
omes

M

ij

=

Z

T

�

i

(�

1

; �

2

) �

j

(�

1

; �

2

) d�

0

1

d�

0

2

=

Z

T

�

i

(�

1

; �

2

) �

j

(�

1

; �

2

) det(J) d�

1

d�

2

(2.58)

The obvious in
onvenien
e is that the Gaus-

sian rules we use to 
ompute the integrals

and, more spe
i�
ally, the nonlinear terms,

need to be augmented by two degrees, sin
e

det(J) is a polynomial expression of degree

2. Therefore, a set of polynomials of degree

5 require a Gaussian rule of degree 12 instead

of 10. Keeping the old set of Gaussian rule

is not impossible but leads to large errors
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sin
e the integrals are not exa
tly evaluated.

From that point of view, the spe
tral quad-

rangle is more eÆ
ient. Sin
e it exists a set

of 
ardinal-orthogonal polynomials on a re
t-

angle, it is more e�e
tive to keep the old set

of Gauss-Lobatto points even if the integrals

are no more exa
t in a 
urved quadrangle.

In fa
t, the errors in the 
omputation of the

integrals are, in this 
ase, roughly of the or-

der of the maximum polynomial order (Ron-

quist, 1980). However, for triangular spe
-

tral elements, the in
onvenien
e of in
reasing

the number of Gaussian points applies only

for the 
urved elements along the boundary.

Therefore, the problem of additional 
ost is

not so serious sin
e it 
on
erns a small set of

elements.

2.5 Summary

In summary, all numeri
al methods have

their advantages and drawba
ks. Traditional

FD methods are of low order (usually, se
-

ond order) and very easy to implement but

may la
k a

ura
y due to the presen
e of

steps in irregular domains. FE methods dis-


retize easily 
omplex domains but are gen-

erally of low order and require the solution of

a matrix problem. Moreover, they may lose

one order in trun
ation errors if the mesh is

too irregular (whi
h often o

urs for triangu-

lar meshes). By 
ontrast, traditional imple-

mentations of FD methods in o
ean models

make use of regular grids. SE methods of-

fer high a

ura
y in 
omplex domains but at

an unknown 
ost and seem to lose a

ura
y

in presen
e of steps. Therefore, they require

the smoothly 
urved boundaries that we in-

trodu
e in Se
tion 2.4.4. We also introdu
e

a simple adaptive mesh strategy for the SE

method. The mesh is re�ned or dere�ned

when the lo
al error is too large. The lo-


al error is estimated based on the jump in

the solution between two adja
ent elements.

Hen
e, the SE model should be able to au-

tomati
ally in
rease the resolution in regions

where the solution is under-resolved. This

might be essential in order to resolve and fol-

low lo
al eddies or moving fronts. The next

step is to investigate the e�e
tive trun
ation

order and the 
ost fun
tion for all the models

presented in this 
hapter.



Chapter 3

Testing the Di�erent Numeri
al

Methods

In this 
hapter we investigate the a

ura
y

of the di�erent models presented in Chap-

ter 2, in straight wall and 
ir
ular geome-

tries. The test 
ases are idealized in the sense

that they are based on the linearized shal-

low water equations and therefore, an ana-

lyti
al solution exists. We are interested in

the e�e
tive trun
ation order and the 
om-

putational 
ost for all s
hemes. These 
on-

siderations are important for the 
hoi
e of

a numeri
al method to use in o
ean mod-

elling. Although this approa
h is very ba-

si
, we stress the fa
t that these 
ompara-

tive studies are rarely done and that little

is known about the relative e�e
tiveness and


ost of ea
h s
heme. For the �nite di�er-

en
e (FD) models in a 
ir
ular geometry, we

are parti
ularly interested in the in
uen
e of

the steps for a wind-driven 
ir
ulation that

o

urs along the walls when the dis
retiza-

tion axes do not 
oin
ide with the orientation

of the walls. These steps may have a detri-

mental e�e
t on the overall e�e
tive trun
a-

tion order. In 
ontrast, �nite element (FE)

and spe
tral element (SE) models have mu
h

less diÆ
ulty in dis
retizing 
omplex bound-

aries. However, the use of irregular grids

may de
rease the e�e
tive trun
ation order

of these models. We perform a 
onvergen
e-

with-resolution study for a non-linear prob-

lem in a square domain. In this 
ase, the

referen
e solution is given by the high-order

spe
tral element (SE) method at a high res-

olution. For this problem, we also present

results using the simple adaptive strategy in-

trodu
ed in the previous 
hapter for the dis-


ontinuous SE method. When a dynami
al

boundary 
ondition has to be found, we tend

to fo
us on slip boundary 
onditions. Other-

wise, the 
uid is assumed to be invis
id.

For 
ir
ular or smooth geometries it is pos-

sible to use 
urvilinear grids for FD meth-

ods and, hen
e, avoid the o

urren
e of steps

along the boundaries. Curvilinear grids 
an

better �t irregular 
oastlines and 
an provide

some variable resolution 
apabilities, su
h

as implemented in the POM (Blumberg and

Herring, 1987) and SPEM (Song and Haid-

vogel, 1994) models. However, some smooth-

ing of the geometry is needed, sin
e 
urvilin-

ear grids 
annot a

ommodate all bays and


apes. This method is therefore of limited

use, sin
e it a

ommodates only the large

s
ale features of the 
oastline. For a realis-

ti
 representation of lateral boundaries, step-

like features would still appear, although the

total number of steps is redu
ed when 
om-

pared to Cartesian grids. We do not 
onsider

the use of 
urvilinear grids in our dis
ussion

of FD methods due to its la
k of generality,

although this method might be adequate for

smoothly varying boundaries.

3.1 Gravity Waves in a

Square Domain

In this se
tion, we present results for the lin-

earized SW gravity wave propagation prob-

lem in a square domain. An elevation per-

turbation is imposed at the beginning of the

simulation, in the form of a sine wave with

phase lines parallel to the y-axis:

�(x; y; t = 0) = h

0


os(2� x=L

x

) . (3.1)

The initial velo
ity is zero. The wave propa-

gates along the x-axis. Sin
e there is no dis-

28
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x
y

elevation

Figure 3.1: The wave test experiment

persion in the y-dire
tion, the problem sim-

pli�es to a one-dimensional problem and a

simple analyti
al solution 
an be found. An

equation for � only 
an be found by substi-

tuting the u-equation in the �-equation

�

tt

� � gH �

xx

� = 0 . (3.2)

With no normal 
ow boundary 
onditions,

the solution is

�(x; y; t) = h

0


os

�

2� x

L

x

�


os(!t) (3.3)

where ! =

p

gH 2�=L

x

. Therefore, the wave

is a free mode of os
illation for the square

basin. It boun
es ba
k and forth between the

walls at the period of 2�=!. The velo
ities

are given by

(

u(x; y; t) = u

0

sin

�

2� x

L

x

�

sin(wt)

v(x; y; t) = 0

(3.4)

where u

0

= gh

0

=

p

gH .

For all models, the numeri
al simulation

is performed up to a tenth of the 
hara
ter-

isti
 period of the wave. This duration is

long enough that the estimation of the e�e
-

tive trun
ation order for the di�erent models

is possible and yet not too long so that the


ontamination by other fa
tors su
h as time

dis
retization errors is limited. The Courant

number is kept 
onstant and is the same for

all models. By in
reasing the resolution of

the models and 
omparing the numeri
al so-

lution to the analyti
al solution, we 
an 
om-

pute the errors and the e�e
tive trun
ation

order of ea
h s
heme. For the FD models, the

grid is oriented along the walls of the square

whi
h 
oin
ide with the dire
tion of the wave

propagation, also the x-axis. Hen
e, there

are no dispersion errors in the y-dire
tion.

However, the FE and SE methods use ir-

regular meshes made of triangles that are

randomly oriented. Therefore, these meth-

ods show a dispersion error along the y-axis

whi
h 
an be quanti�ed as a fun
tion of res-

olution. The errors are 
omputed and nor-

malized as

E(�

mod

) =

R R

j�

mod

� �j dxdy

R R

dxdy

�

s

R R

dxdy

R R

�

2

dxdy

(3.5)

where � and �

mod

represent respe
tively the

analyti
al and model solution of any vari-

able. The term

R R

�

2

dxdy is 
omputed

analyti
ally and is therefore the same for

all models. For FD models,

R R

j�

mod

�

�j dxdy =

R R

dxdy is approximated by

P

ij

j�

mod

� �j=(n

x

n

y

). For the FE and SE

models, this integral is 
omputed by inter-

polating j�

mod

��j onto a regular grid, sum-

ming the values and dividing by the number

of sampling points. We in
rease the number

of sampling points until a 
onvergen
e 
rite-

rion is satis�ed. The normalized error for u

is obtained from (3.5) by dire
t repla
ement

of � by u. For v, this is not possible as its an-

alyti
al value is zero. We have thus used the

analyti
al value of u for

R R

�

2

dxdy. The


hoi
e of norms in (3.5) in determining the

normalized error is somewhat arbitrary and

other norms 
an be used. However the re-

sults would not be substantially di�erent.

We �rst 
ompare the a

ura
y of the lin-

earized version of the 4th order A-grid model

to that of the se
ond order C-grid formula-

tion (Figure 3.2). On this log-log plot, the

slope of the 
urve is dire
tly related to the or-

der of the 
onvergen
e. The C-grid s
heme is

very 
lose to se
ond order and the original A-

grid model (as proposed by D93 and referred

as O-FDM4) has a 
onvergen
e order of 
lose

to 4. However, the errors 
an be redu
ed by

a fa
tor of six if the 4th order a

ura
y is

extended up to the boundary (R-FDM4 ver-

sion). The gradient and interpolation oper-

ators then need to be o�-
entered for points

lo
ated less than two points away from the

walls. In terms of 
ost, the A-grid model is

very advantageous (see Fig 3.3 where only

results from R-FDM4 is plotted). The ex-

tra points in the 
omputation of the gradi-
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ent operators needed for 4th order a

ura
y

slow the model only slightly. Therefore the

4th order A-grid is 
ost-e�e
tive 
ompared

to the C-grid for this problem.
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Figure 3.2: Convergen
e with resolution of

the normalized error in the u-
omponent for

se
ond order C-grid formulation (FDM), O-

FDM 4 and R-FDM 4 models. The R-FDM4

is an A-grid formulation with o�-
entered op-

erators to in
orporate the 4th order a

ura
y

up to the boundary
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Figure 3.3: CPU 
ost with the normalized

error in u-
omponent for the se
ond order

C-grid (FDM) and R-FDM4 models.

For FE models, the use of irregular grids


ause errors to appear in the v-
omponent,

perpendi
ular to the propagation dire
tion.

These errors 
an also be viewed as a dis-

persion error. One way to minimize this

error would be to design meshes for whi
h

the nodes or verti
es are aligned with the

propagation axis (i.e. 
hara
teristi
 meth-

ods). Su
h a mesh would therefore be appli-


ation dependent. We fo
us instead on the

use of irregular meshes in whi
h the trian-

gles are randomly oriented sin
e, in general

o
ean modelling, there are no preferential

dire
tions of propagation. We examine the

four FE models introdu
ed in Se
tion 2.3:

the Lyn
h and Werner (1987; 1991) model,

the Hua and Thomasset (1984) model, the

Peraire et al. (1986) model and the Le Roux

et al. (2000) model. The respe
tive abbrevi-

ations are: LW, HT, PZM and LLS. In our


omparison study, we multiply by two the a
-

tual resolution of the mesh for the LLS model

to take into a

ount the fa
t that this model

impli
itly doubles the resolution by dividing

ea
h triangle into four sub-triangles. Fig-

ure 3.4 shows the 
onvergen
e with resolu-

tion of the errors for the v- and u-
omponents

for a linearized version of all FE models. In

su
h a 
ase, the LLS model is plainly Eule-

rian instead of semi-Lagrangian. The errors

are generally larger for the FE models 
om-

pared to the C-grid FD model, ex
ept for the

LLS model where the errors are 
omparable.

This is notably due to the use of unstru
-

tured grids in FE models.

Table 3.1 gives the value of the 
onver-

gen
e order for both 
omponents of the ve-

lo
ities for all models. The order is usually

lower for the v-
omponent (
loser to �rst or-

der) than that of the u-
omponent (
loser to

se
ond order) for all FE models. This is how-

ever an artefa
t due to studying the two 
om-

ponents of the velo
ity separately. The error

in v is usually smaller than the error in u.

This allows for some noise 
ontamination to

lower the 
onvergen
e order for v 
ompared

to that for u. The 
onvergen
e order for the

velo
ity ve
tor tends to be in between but


loser to the 
onvergen
e order for u sin
e

the errors are largest for this 
omponent.

The equal-order FE models (LW and

PZM) present the best 
onvergen
e order for

u (about 2) and also the poorest order for

v (about 1). The LLS model presents the

largest order for v. The order for the HT

model is 
loser to �rst than se
ond order for

both 
omponents of velo
ity. Theoreti
ally,

the best a
hievable 
onvergen
e order for the

FE models under 
onsideration is se
ond or-

der. The fa
t that the 
onvergen
e order

for most models is less than but 
lose to 2

for u is due to the use of irregular meshes.

The 
hange, though, is not as dramati
 as
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predi
ted in Se
tion 2.3.2 where we predi
t

�rst order 
onvergen
e in presen
e of irregu-

lar meshes for se
ond order a

urate FE for-

mulations.

Sin
e the LLS model is the best FE model

in terms of the magnitude of the errors |

to the point that the magnitude 
ompares

favorably to that of the C-grid errors| it is

worth 
onsidering some of the reasons behind

this result. First, the method uses ma
ro

elements sub-divided into four elements and

this may \regularize" the mesh sin
e the four

sub-triangles are identi
al in shape and area.

Se
ond, it is also possible that the fa
t that

the 
oupled shallow water equations are re-

du
ed to 
oupled Helmholtz equations for

the velo
ity improves the solution for the

velo
ity. The fa
t that the order for this

model is somewhat smaller 
ompared to that

of the LW and the PZM models for the u-


omponent might be a sign that the trun-


ation order for the pressure slightly a�e
ts

the trun
ation order for the velo
ity. This

will be more evident in the next test-
ase.

For the HT model, the smaller 
onvergen
e

order is probably related to the use of dis
on-

tinuous basis fun
tions for the velo
ities, in


ontrast to 
ontinuous basis fun
tions used

in the other FE models. In 
on
lusion, for

this linear problem, all FE models perform

relatively well |ex
ept for the HT model.

We now 
ompare the results of one FD

model (C-grid) and one FE model (LW) to

the dis
ontinuous SE model (Fig 3.5 and

3.6). To make results 
omparable, the SE

resolution (the inverse of the mean length of

triangle sides) is multiplied by the maximum

polynomial order. The LW-FE errors are

generally larger than those of the FD and SE

models. The SE model has a 
onvergen
e or-

der that varies between n




and n




�1 depend-

ing on the velo
ity 
omponents. If the basis

fun
tions were 
ontinuous, the best a
hiev-

able 
onvergen
e order would be n




+1. The

loss of more than one order is probably re-

lated to the use of unstru
tured meshes and

the fa
t that the basis fun
tions are dis
on-

tinuous between elements. At n




= 3, the

a

ura
y of the SE model is slightly better

than the FD model. At the same resolution,

the higher-order method is always more a
-


urate (n




= 5 and 7). Finally we noted that

as for the FE models, the SE model shows a

di�eren
e (Table 3.1) in the 
onvergen
e or-

der for v and u, with the order for v being
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Figure 3.4: The four FE models (LW, HT,

PZM, LLS) are tested against the analyti
al

solution with in
reasing resolution. On top is

the normalized error for the v-
omponent; at

the bottom is the normalized error for the u-


omponent. The error for the u-
omponent

of the C-grid FD model is plotted for 
om-

parison.
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smaller than that for u. This is related to

the use of irregular grids and noise 
ontami-

nation problems.

Figure 3.7 shows the variation of the CPU


ost with respe
t to the a

ura
y for the

C-grid FD model and one A-grid FD (R-

FDM4) model, the LW and LLS FE mod-

els and the dis
ontinuous SE model. The


urve is usually a straight line. The less the

slope of the 
urve, the more a

urate for the

same 
ost one model is. The model whose


urves lies on the right (left) of the others is

the most (less) e
onomi
 model. There is of


ourse the possibility that some models per-

form better than the others depending on the

range of the required a

ura
y due to the ex-

isten
e of 
ross-over points between the dif-

ferent 
urves. The LW model is always less

a

urate for the same 
ost with the slope be-

ing equivalent to that of the �nite di�eren
e

model. The LLS model enhan
ed a

ura
y


ompared to the other FE models (Fig. 3.4)

is traded o� by a large in
rease of the CPU


ost, to the point that the LLS model is only

marginally better than the LW model. The

SE model with n




= 5 behaves similarly to

the 4th order A-grid model. However, the A-

grid model is slightly more a

urate for the

same 
ost. Nonetheless, the SE model with

n




= 7 give better results than this 4th or-

der FD model. From this linear test 
ase,

we 
on
lude that it is more e�e
tive to use

higher order methods (the SE and R-FDM4

models).

3.2 The Wind-driven Cir
u-

lation in a Cir
ular Do-

main

A linear analyti
al solution 
an be found for

the wind-driven problem in a 
ir
ular domain

with Coriolis for
es and damped by a lin-

ear bottom fri
tion. No vis
osity is in
luded.

The boundary 
ondition is simply the no-

normal 
ow 
ondition at the model bound-

ary. The steady state linearized shallow wa-

ter equations in 
ylindri
al 
oordinates for
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Figure 3.5: Convergen
e of the normalized

error in v with respe
t to the resolution for

the LW-FE and SE models. SPOC3,5,7 
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responds to the SE model with n
 = 3; 5; 7
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Figure 3.7: Variation in the u-
omponent

normalized error as a fun
tion of CPU 
ost.

The former is measured by the area inte-

grated absolute value di�eren
e between the

numeri
al and analyti
al model results for

the C-grid FD, R-FDM4, LW, LLS and SE

models. SPOC3,5,7 
orresponds to the SE

model with n
 = 3; 5; 7

Model


onvergen
e

order for

the error in

v


onvergen
e

order for

the error in

u

C-grid FD {

2.03

O-FDM 4 { 3.85

R-FDM 4 { 4.09

LW

0.94 1.91

HT 1.08 1.30

LLS 1.43 1.69

PZM 1.01 1.97

SPOC 3

2.57 2.73

SPOC 5 4.00 4.68

SPOC 7 5.96 6.72

Table 3.1: Convergen
e order for the di�er-

ent models for the linear wave experiment in

a square domain. For all models, the order is

fairly 
lose to their theoreti
al value. Models

using unstru
tured grids lost almost an order

for the error in v 
ompared to the error in u.

this problem are

g

��

�r

= ��v

r

+ �

x

=H 
os � + fv

�

(3.6)

g

r

��

��

= ��v

�

� �

x

=H sin � � fv

r

(3.7)

�(rv

r

)

�r

+

�(v

�

)

��

= 0 (3.8)

where the wind for
ing is given in 
ylindri
al


oordinates by the relationship

�

x

=

W y

R

=

Wr sin �

R

. (3.9)

where R is the radius of the 
ir
ular domain.

From (3.6-3.8), we derive an equation for �

r

�

2

�

�r

2

+

��

�r

+

1

r

�

2

�

��

2

= �r

Wf

RgH�

(3.10)

with the boundary 
ondition of no-normal


ow

�

��

�r

+

f

r

��

��

=

�

x

f

gH

(� 
os ��f sin �) at r = R .

(3.11)

This leads to the solution without Coriolis

for
e,

� =

Wr

2

4gHR

sin 2� (3.12)

and with Coriolis for
e

� =

Wf

RgH�

�

R

2

8

+

r

2

4

�

�

f

sin 2� � 1

��

.

(3.13)

With or without the Coriolis terms, the ve-

lo
ity 
omponents take the simple form of

8

<

:

v

r

= 0

v

�

= �

Wr

2R�

(3.14)

whi
h translate in the Cartesian 
oordinate

system to

8

>

<

>

:

u =

W

2R�

y

v = �

W

2R�

x .

(3.15)

We perform a one year spin-up for all models

with W = 10

�4

m

2

s

�2

, f = 10

�4

s

�1

or zero
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and � = 10

�3

s

�1

. This is enough to 
on-

verge to a steady state a

urate at six digits

for the kineti
 energy. The normalized error

is 
omputed in the same manner as in (3.5)

but using the elevation �eld. We fo
us on the

elevation this time be
ause, for the HT and

LLS FE models, the pressure basis fun
tions

are di�erent from the basis fun
tions used to

represent the velo
ity. Furthermore, the pre-

vious test 
ase does not allow for an inter-

esting 
omparison of the elevation �elds (the

elevation is imposed at initial time), whereas

this one does.

We �rst analyze the results from the C-

grid model. Be
ause of the presen
e of steps

(Fig. 3.8), it is not 
lear whi
h opposing ef-

fe
t is dominant when the resolution is in-


reased: an in
reased a

ura
y in the inte-

rior and a more a

urate representation of

the boundary, or a lower a

ura
y be
ause of

the in
reased number of steps. For brevity,

we only show the results for one 
ase, at

f = 0, sin
e 
onvergen
e properties are not

signi�
antly di�erent than those at f 6= 0.

Figure 3.9 shows the 
onvergen
e of the nor-

malized error in � with in
reasing resolution.

It appears that the 
onvergen
e order of the

C-grid FD model is 
loser to one (1.1 when

f = 0 and 1.3 when f = 10

�4

s

�1

) than two,

the maximum for this se
ond order FD for-

mulation. Therefore, the steps have a dire
t

in
uen
e on the order of the FD model. The

order is redu
ed 
ompared to the previous

test-
ase with straight walls. The perturba-

tion due to the singular steps on the 
ow

does degrade the a

ura
y, although not to

the point that the errors in
reases with in-


reasing resolution.

We now 
ompare the solution from the C-

grid FD model with the O-FDM4 and R-

FDM4 models. Figure 3.9 shows that the

order of the A-grid model is a
tually less

than two in presen
e of step-like walls. Fur-

thermore, there is no longer a di�eren
e, in

term of trun
ation order, between the se
-

ond order C-grid and the 4th order A-grid

models |unlike the 
ase with straight walls.

Therefore, the presen
e of steps along irreg-

ular boundaries has a detrimental e�e
t on

the a

ura
y of high order FD formulations

if the 
ow is allowed to slip along the walls.

We now 
ompare the FE models to the C-

grid model. In this 
ir
ular geometry, all FE

Figure 3.8: Grids for the 
ir
ular domain for

the FD models. 51�51, 101�101 and 201�

201 points for domain on the left, 
enter and

right respe
tively.
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Figure 3.9: Convergen
e with resolution of

the normalized elevation error for the se
-

ond order C-grid FD, O-FDM4 and R-FDM4

models in a 
ir
ular domain.

models have the advantage that the repre-

sentation of the boundary is improving as

the resolution is in
reased. Therefore, it

should be possible to observe 
onvergen
e or-

der 
lose or even ex
eeding two. Figure 3.10

and Table 3.2 show that all FE models have

a 
onvergen
e rate 
lose to se
ond order ex-


ept for the LLS model. The LLS model also

shows the largest errors. The reasons for the

poor performan
e of this model are as fol-

lows. Firstly, the geometry is resolved by the

ma
ro-elements. Thus the representation of

the boundary su�ers from being half sam-

pled 
ompared to the permitted resolution.

Se
ond, we fo
us here on the elevation errors

whi
h are always larger for the LLS model

be
ause the pie
ewise 
onstant basis fun
-

tions are not as a

urate as those of the other

models. For the HT model, the improvement

in the error 
ompared to the previous test-


ase is probably due to the basis fun
tion for

� being 
ontinuous. In fa
t, all FE models

used this basis fun
tion for the elevation ex-


ept for the LLS model. Hen
e in terms of

a

ura
y, all FE models appear to perform

better than FD models in non-re
tangular

geometries for linear problems, ex
ept for the

LLS model. In terms of 
ost, the equal-order

FE models are the most e�e
tive. However,

we still need to demonstrate the eÆ
ien
y

of FE models for nonlinear problems before


on
luding on the general e�e
tiveness of FE

models in irregular domains.
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Figure 3.10: Normalized elevation error in a


ir
ular domain for an invis
id linear solu-

tion. The four FE models (LW, HT, PZM,

LLS) are tested against the analyti
al solu-

tion with in
reasing resolution. The error for

the FD model (FDM) is given for 
ompari-

son.

For the SE model, the results are given

in Fig. 3.11 where we 
ompare the solutions

from the C-grid FD, LW FE and SE mod-

els. The results for the SE model shows a

surprising feature. The 3rd order SE model

has a better a

ura
y than the FE model but

the errors for the 5th and 7th order SE are

larger than expe
ted. The 
onvergen
e or-

der is also a�e
ted (see Table 3.2). In this

parti
ular example, the main sour
e of er-

rors 
omes from the dis
retization of the 
ir-


ular geometry by pie
ewise parabolas. A

quadrati
 spline des
ription of the 
ir
ular

boundary allows for (at least) a 3rd 
onver-

gen
e order. This explains why the 
onver-

gen
e order for the 3rd order SE model ap-

pears optimal but less optimal for the 5th

and 7th order SE model. The order of the so-

lution improves in the interior but the error

along the boundary being larger leads and


auses a overall loss in the 
onvergen
e order.

One solution would be to implement more


omplex 
urved elements along the bound-

ary (using 
ubi
 or more splines), but as ex-

plained in Se
tion 2.4.4, in
reasing the order

of the pie
ewise 
urves along the 
urved ele-

ments is not always pra
ti
al.
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Figure 3.11: Normalized elevation error for

the C-grid FD, LW-FE and SE models for a


ir
ular domain. The 
urve for the SE model

at n




= 7 (SPOC 7) is on the right of that

for n




= 5 (SPOC 5) presenting some kind

of \saturation" e�e
t.

Model


onvergen
e order

for the error in �

C-grid FD

1.15

O-FDM 4 1.51

R-FDM 4 1.24

LW

2.40

HT 1.91

LLS 0.98

PZM 1.94

SPOC 3
3.33

SPOC 5 4.09

SPOC 7 4.64

Table 3.2: Convergen
e order in elevation,

for the di�erent models for the linear wind-

driven experiment in a 
ir
ular domain with-

out Coriolis terms.

3.3 Conservative Properties

of the Di�erent Numer-

i
al Formulations for a

Nonlinear Problem

We 
ompare the FE models and the dis
on-

tinuous SE model to the solution given by

the C-grid FD model in a test-
ase for whi
h

the total energy (kineti
 and potential) is


onserved during the time of the simulation.

A geostrophi
ally balan
ed eddy is initial-

ized at the beginning of the simulation in

a square domain on a beta plane approxi-

mation for all models. The shallow water

equations are fully nonlinear. The 
uid is

invis
id, that is no eddy vis
osity is applied

and therefore no dynami
al boundary 
on-

dition is required. We introdu
e two ver-

sions of the LW model. The �rst one is

the original model in whi
h the mass ma-

trix is lumped (see Se
tion 2.3 for expla-

nation) and is referred as lumped LW. The

se
ond version uses the delumped mass ma-

trix (the full |sparse but not diagonal|

mass matrix) and is referred as delumped

LW. The SE model is run on a 132 trian-

gle mesh at n




= 5. The geostrophi
 eddy

moves slowly westward due to the spheri
ity

of the earth and slightly southward due to

the nonlinear terms (f

0

= 1:0285 � 10

�4

s

�1

and � = 1:607 � 10

�11

m

�1

s

�1

). The ini-

tial height is 580 m and 
orresponds to a ve-

lo
ity maximum of 1 m/s 
urrents for a re-

du
ed gravity of g

0

= 0:01 m/s

2

. There is no

for
ing and no dissipation, therefore the to-

tal energy should be 
onserved. Figure 3.12

shows the results. The FD and SE models

do indeed 
onserve energy, but all the FE

models tend to lose energy. The FE mod-

els that dissipate energy moderately are the

delumped LW model, 
losely followed by the

LLS model. The HT model be
omes unsta-

ble after a few days of integration and re-

sults for this model are therefore not shown.

This illustrates the severe stability problem

su�ered by this model. The results for the

lumped and delumped LW model are shown

for �

0

= 2� 10

�3

s

�1

(see Se
tion 2.3 for de-

tails on �

0

). The lumped LW model appear

to be more dissipative than the delumped

version. We tested other values of �

0

for the

lumped and delumped LW models (the re-

sults are not shown). For smaller �

0

both
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Figure 3.12: Total energy after 18 days of

simulation for the C-grid FD and the lumped

LW, delumped LW, PZM and LLS FE mod-

els and the SE model for the geostrophi
ally

balan
ed eddy with no dissipation and no

for
ing. All the FE models tend to be over-

dissipative.

versions of the model tend to be even more

dissipative and the lumped version is unsta-

ble when �

0

is too large (> 10

�1

s

�1

) or too

small (< 5 � 10

�5

s

�1

). The in
uen
e of �

0

on the dynami
s will be further investigated

in the next test 
ase.

3.4 The Munk Problem in a

Square Domain

In this se
tion, we 
ompare the models us-

ing a se
ond nonlinear problem, namely the

single gyre Munk problem. With a 
onstant

wind, the spheri
ity and rotation of the earth

yield a strong return 
ow along the western

wall. The wind for
ing is given by the stress

�

x

= �10

�4

sin(� y=L

y

) m

2

s

�2

and �

y

= 0.

The remaining model parameters are iden-

ti
al to those of the previous se
tion. The

energy put in the o
ean by the winds is dis-

sipated mainly in a vis
ous layer along the

boundary be
ause of the strong return 
ow

there. The eddy-vis
osity, � = 700 m

2

s

�1

, is


onstant over the whole domain. We use the

free-slip boundary 
ondition. A strong re-


ir
ulation forms in the northwestern part of

the domain, eviden
e of the nonlinear e�e
ts

in the solution. Under free-slip, the solution

is very sensitive to the shape of the bound-

aries and to the value of �. We hope to shed

some light on the sensitivity of the FD mod-

els to steps o

urring along the boundaries,

as FD models generally do not work well in

irregular geometries. Furthermore, be
ause

of the sensitivity of the solution to �, we ex-

pe
t to better observe the dissipative nature

of FE models.

For the C-grid FD model, Ad
roft and

Marshall (1998), hereafter AM, performed

the same test-
ase for somewhat di�erent

model parameters. An important �nding

in this study is that the C-grid model is

very sensitive to the presen
e of steps, to

the point that simulations run in a rotated

square basin with respe
t to the grid yield

very di�erent results 
ompared to the non-

rotated simulation. This sensitivity 
ould

greatly be redu
ed if the 
onventional �ve-

point Lapla
ian in the vis
ous tensor is re-

pla
ed by a dis
retized vorti
ity-divergen
e

form. The two tensor formulations are equiv-

alent in a non-rotated basin, but are di�er-

ent in presen
e of steps. Around steps, the

vorti
ity-divergen
e formulation tends to a
-


elerate the 
uid par
els 
ompared to the


onventional stress formulation. Their �nd-

ings suggest that free-slip 
ir
ulations 
an be

made independent of the way the 
oastline is

dis
retized. We shall return to this issue in

the next 
hapter.

We 
onsider the solution from the 4th or-

der A-grid model. When running the non-

linear version of this model with free-slip

boundary 
onditions, we noted that hav-

ing 4th order a

ura
y extended up to the

boundaries has some positive in
uen
e on

the stability of the overall model. Figure 3.13

shows that large spurious numeri
al modes

are present for O-FDM4, whereas there are

no visible spurious modes for R-FDM4. We

also 
onsider the same experiment in a ro-

tated basin with respe
t to the grid, follow-

ing AM. Strong numeri
al noise again o

urs

for O-FDM4 (Fig. 3.14). The model remains

however stable and relatively noise-free when

the 4th order extends up to the walls, al-

though the total kineti
 energy is less than

that for the non-rotated basin experiment.

Moreover, the overall 
ir
ulation looks very
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similar to that observed by AM with the

C-grid and 
onventional vis
ous stress ten-

sor in rotated basins. The C-grid solutions

tend to be less noisy, though. These two ob-

servations (numeri
al noise and lower ener-

geti
 level) demonstrate that the 4th order

formulation is very sensitive to the presen
e

of steps when the free-slip boundary 
ondi-

tion is used. We did not test whether the

vorti
ity-divergen
e form of the stress tensor

has the same positive in
uen
e for R-FDM4,

as it does in the 
ase of the C-grid. Chap-

ter 4 will be spe
i�
ally dedi
ated to a thor-

ough study of the issue of FD dis
retizations

and adve
tive and stress tensor formulations

in rotated basins.

We 
ompare now the FE models to the so-

lution given by the C-grid FD model for a

non-rotated basin. All FE models tend to

show a kineti
 energy value well below the

FD model during spin-up (Fig. 3.15). The


ir
ulation also proves to be weaker in mag-

nitude for the FE models when 
ompared to

the FD model 
ir
ulation (Fig. 3.16), show-

ing the dissipative nature of FE models. We

dis
uss some of the reason for this behavior.

For the HT model, in
reasing the resolution

did not improve the solution (not shown).

There is therefore some sort of zero trun
a-

tion order error in this model. This may arise

from the dis
retization error of the nonlin-

ear terms in the momentum equations due

to the dis
ontinuous linear form of the ve-

lo
ity basis fun
tions. The PZM model may

be dissipative be
ause of the use of averaged

values at triangle 
entroids in the 
omputa-

tion of 
uxes. The LLS is dissipative be-


ause of the dissipative nature of the low or-

der Kriging method used in the time semi-

Lagrangian dis
retization (see Se
tion 2.3 for

more details). We do not expe
t to see any

improvement with in
reased resolution for

this model be
ause higher resolution means

smaller time-steps, and therefore, a larger

number of interpolation operations.

For the LW model, the mass equation is

not solved independently for the elevation

but is mixed with a wave equation (Eq. 2.36).

In theory, both equations should be satis�ed

independently. However, sin
e both equa-

tions are mixed together, neither is solved

exa
tly and this may in
uen
e the overall

o
eani
 
ir
ulation. The wave equation tends

to transfer �, equivalent to the mass, through

the whole domain by means of gravity waves.
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Figure 3.15: Kineti
 energy during a 6 year

spin-up for the C-grid FD, the lumped LW,

HT, PZM and LLS FE models.

This pro
ess may upset the lo
al geostrophi


balan
e by transferring the mass through the

streamlines. This pro
ess is equivalent to

having a dissipation term in the mass equa-

tion. To illustrate this, we vary the value

for �

0

, the free parameter appearing in the

wave-mass equation for the wind-driven sin-

gle gyre Munk problem. Figure 3.17 shows

that the kineti
 energy for a single gyre wind

for
ing at the end of the simulation varies sig-

ni�
antly with the value of �

0

(not to be 
on-

fused with the wind stress; see Se
tion 2.3 for

details). In the limit �

0

! 1, whi
h 
orre-

sponds to satisfying the lo
al mass balan
e,

the results are very similar to the ones ob-

tained using the FD method. However, as

we noted earlier the model 
an be unstable

for large values of �

0

for 
ertain appli
ations

(Se
tion 3.3). A good 
ompromise is found

by experimenting with di�erent values of �

0

and is therefore very appli
ation dependent.

For the dis
ontinuous SE model, we 
on-

sider the Munk problem for two values of

the eddy-vis
osity. We retained for 
ompar-

ison the C-grid FD model and the delumped

LW FE model at �

0

= 2 � 10

�3

s

�1

, whi
h

gives better results than the lumped version.

The SE model is run at n




= 5 on a 56 tri-

angle mesh. We 
ompared results from the

FD, SE and FE models for two values of the

vis
osity 
oeÆ
ient. For the high vis
osity


ase (� = 2000 m

2

s

�1

, Fig.3.18) the models

perform similarly, with the FE model show-

ing smaller undershoots. The SE and FD
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Figure 3.13: Elevation �eld after a six year simulation in a non-rotated basin using O-FDM4

(left panel) and R-FDM4 (right panel). The 
onventional Lapla
ian is used.

Figure 3.14: As for Figure 3.13 but for rotated basin.
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Figure 3.16: Elevation �eld after a 6 year spin-up for the C-grid FD, the lumped LW,

delumped LW, HT, PZM and LLS FE models for the single gyre wind for
ing problem.
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Figure 3.17: Single gyre wind for
ing experi-

ments for the delumped LW FE model 
om-

pared to the C-grid FD model. As �

0

in-


reases the weight is more on the mass equa-

tion than on the wave equation in the LW

model. This in
uen
es the value of the ki-

neti
 energy at the end of the 6 year runs

(bla
k squares). For referen
e, the FD 
urve

and, LW 
urves for � =700 m

2

s

�1

at �

0

=

2 10

�3

s

�1

.

kineti
 energy 
urves are indistinguishable.

For the SE model, Figure 3.19 gives the 
on-

tours of the elevation at the end of the simu-

lation. No dis
ontinuities are visible, despite

the fa
t that the solution is dis
ontinuous by

de�nition. A larger dis
repan
y is observable

for a lower vis
osity 
ase (� = 700 m

2

s

�1

,

Fig.3.20) between the FE model and the FD

and SE models, due to the dissipative nature

of the LW model. At the end of the 6 year

simulation, there is a 5% di�eren
e between

the kineti
 energy for the FD and SE models.

This is an eviden
e that the SE model la
ks

resolution in 
ertain parts of the domain, as

some dis
ontinuities are now visible in the

elevation �eld (Fig.3.21).

We now examine the a

ura
y and 
ost of

the FD and SE models. We have dis
arded

the solutions obtained by all FE models be-


ause of their over-dissipative behavior. As

an indi
ator of the a

ura
y, we use the ki-

neti
 energy of the basin. Sin
e the solu-

tion of this test problem is nonlinear, a ref-

eren
e solution is obtained by running the

spe
tral model for 6 years from rest with

n




= 7 and a mesh of 132 nodes. The er-
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Figure 3.18: Kineti
 energy during spin-

up for the single gyre Munk problem with

� = 2000 m

2

s

�1

for the C-grid FD, the

delumped LW FE and SE models. The FD

and SE 
urves are indistinguishable. For the

SE model (SPOC), n




= 5 and the mesh has

56 triangles.

Figure 3.19: Elevation �eld for the SE model

after 6 years from spin-up for the single gyre

Munk problem 
orresponding to Figure 3.18.
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.

Figure 3.21: As for Fig. 3.19 but with � =

700 m

2

s

�1

.

ror is then de�ned as the di�eren
e between

the value of the kineti
 energy obtained by

one model after a 6 year run and that of

the referen
e solution. The normalized er-

ror is 
omputed by dividing the error by the

value of the kineti
 energy found in the ref-

eren
e solution. Figures 3.22 and 3.23 show

the 
onvergen
e of the error with resolution

and CPU 
ost respe
tively. The fa
t that

the �nite di�eren
e results give 
lose to se
-

ond order a

ura
y suggests the referen
e so-

lution is an a

urate approximation of the

true solution. These two �gures 
on�rm in

general the behavior inferred from the lin-

ear test 
ase. The 
onvergen
e with resolu-

tion and CPU time is faster with higher order

methods. However, the fa
t that there is a


ross-over point indi
ates that below a 
er-

tain resolution (�x > 10 km), the FD model

is more a

urate for the same 
ost. At the


ross-over point the error in kineti
 energy

is less than 1%. Therefore, the SE model is

more 
ost-e�e
tive than the FD model in a

range of resolution for whi
h the overall error

is already below 1%.

It is also of interest to investigate the 
ost-

e�e
tiveness of the adaptive re�nement strat-

egy developed in Se
tion 2.4.3 for the SE

model. Sin
e this allows for variable reso-

lution in spa
e and time, it may prove more

e�e
tive than having a �xed and rather uni-

form mesh in time. We use the re�nement

parameters �

i

and n


he
k

given in Table 2.2

and we test the SE model for the Munk prob-

lem with � = 700 m

2

s

�1

for three values for

�

1

(0.3, 0.2 and 0.1), whi
h 
ontrols the max-

imum dis
ontinuity allowable between two el-

ements. We obtain the 
ir
ulation patterns

of Figure 3.24 (middle panels) and meshes

(top panels) at the end of the 6 year sim-

ulation. The time evolution of the number

of elements for �

1

= 0:1 (the smallest value

used) shows that part of the re�nement goes

into following the Kelvin waves at the begin-

ning of the simulation, whi
h require more

resolution along the boundaries (Fig. 3.24,

bottom panels). When the Kelvin adjust-

ment pro
ess weakens, a dere�nement pro-


ess o

urs along the eastern and southern

boundaries leaving higher resolution regions

along the strong western return 
ow. As �

1

de
reases, the re�ned triangles get smaller

and smaller, and the total number of ele-

ments at the end of the simulation in
reases

slightly. The isolines of the elevation �eld

are smoother than those of Figure 3.21, for
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e with resolution for

the nonlinear Munk problem of the normal-

ized kineti
 energy error for the solution from

the C-grid FD and the SE models. SPOC 5,7


orresponds to the SE model at n




= 5; 7.
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orresponds to the adaptive SE

model at n
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Figure 3.23: As for Fig. 3.22 but for the 
on-

vergen
e of the normalized error with CPU


ost.

Model


onvergen
e order

for the error in

kineti
 energy

C-grid FD

2.18

SPOC 5 4.96

Table 3.3: Convergen
e order for the di�er-

ent models for the nonlinear Munk problem

in a square domain.

whi
h a �xed and rather uniform 56-triangle

mesh was used for the SE model. There-

fore, the 56-triangle mesh is too 
oarse to

model this parti
ular Munk problem with

� = 700 m

2

s

�1

. We also note that the iso-

lines are slightly smoother as �

1

de
reases.

The 
onvergen
e rate of the error in kineti


energy with resolution is better than the SE

model at n




= 5. However, the a

ura
y-

to-
ost 
onvergen
e is not as good with the


ross-over point of the FD model being at

a higher a

ura
y level. This may be due

to the fa
t that the re�nement needed to re-

solve the Kelvin waves along the boundaries

at the beginning of the simulation results in

smaller time steps. This failure points also to

a need for lo
al time-stepping, although it is

not quite 
lear how to implement su
h a pro-


edure without loss of a

ura
y. Of interest

is to note that the error in the kineti
 en-

ergy de
reases faster than �

1

. For instan
e,

we gain about one order in the the kineti
 en-

ergy error by de
reasing �

1

by a fa
tor three.

If the SE model were truly of trun
ation or-

der n





lose to the element edges, the kineti


energy error should have de
reased by the

same fa
tor as �

1

. This tends to prove that

the errors in the SE model are larger at the

boundary between elements where the dis-


ontinuities o

ur. However, these errors do

not seem to adversely a�e
t the overall a

u-

ra
y, possibly be
ause these larger errors are

lo
alized to the edges of the elements.

3.5 Con
lusions

We have tested in this 
hapter di�erent FD,

FE and SE methods. We �rst rule out the

possibility of using a high order A-grid FD
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Figure 3.24: Solutions after a 6 year spin-up for the Munk problem using the adaptive

SE model with n




= 5. Shown are the �nal mesh, elevation �eld, and history of mesh

re�nement. (a) for �

1

= 0:03, �

3

= 0:15; (b) for �

1

= 0:02, �

3

= 0:1; (
) for �

1

= 0:01,

�

3

= 0:05.
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model be
ause, in the presen
e of irregular

geometries and for an invis
id 
ow, the ef-

fe
tive trun
ation order is less than se
ond

order a

urate. This was demonstrated in a


ir
ular domain and is due to the presen
e

of steps o

urring along the boundary when

dis
retizing 
omplex domains on Cartesian

grids. The order of the model may have been

preserved in 
urvilinear geometry, but we did

not 
onsider 
urvilinear grids as they are lim-

ited to smooth domains. The same applies to

the se
ond order C-grid model, although the

loss of a

ura
y is less severe.

We also 
onsidered FE methods, some of

whi
h are quite simple (equal-order formula-

tion). They all use linear basis fun
tions for

velo
ity and therefore we expe
t these meth-

ods to be no more than se
ond order a

u-

rate. In fa
t, for linear appli
ations in re
t-

angular domains, the e�e
tive trun
ation or-

der of FE models is fairly 
lose to two. There

is an in
rease in the errors due to the use of

unstru
tured grids. This in
rease is suÆ
ient

for FD methods to outperform FE methods

in terms of 
ost. On the other hand, in a 
ir-


ular domains the order of the FD methods

is 
loser to one than two. Thus to obtain the

same a

ura
y, the 
ost of using FD methods

in irregular domains be
omes qui
kly pro-

hibitive with in
reasing resolution 
ompared

to FE methods. However, for nonlinear ap-

pli
ations, all equal-order FE methods tend

to be more dissipative, mostly be
ause of

the stabilizing formulations that guarantee

the stability of the model. Hen
e, appli
a-

tions of these methods for non-linear o
eani



ows seems problemati
. There are other FE

methods whi
h are stable by 
onstru
tion,


omplying with the so-
alled LBB 
ondition,

and are non-dissipative (see Se
tion 2.3 for a

review on FE model stability issues). Unfor-

tunately, the 
ost asso
iated with these mod-

els is fairly large (they generally use higher

than linear basis fun
tions for the velo
ity

and leads to fuller matri
es). Moreover, as

these models use lower order basis fun
tions

for the elevation (or pressure), the a
tual a
-


ura
y for this variable may be smaller 
om-

pared to other numeri
al methods. Sin
e

modern altimetry o�ers near global 
over-

age of the elevation of the o
eans, a good

FE o
ean modelling strategy may be to not

sa
ri�
e the a

ura
y for this variable. We

used the LLS model whi
h ful�lls the LBB

stability 
ondition as an illustration. We

showed that the velo
ity errors for a linear

test 
ase are less for this model than those

of the equal-order FE models and that the

elevation errors are greater. However, the in-


reased a

ura
y in velo
ity is exa
tly traded

o� by an in
reased 
ost. Unfortunately, the

nonlinear (original version) LLS model uses a

semi-impli
it semi-Lagrangian time formula-

tion, whi
h leads to dissipation when applied

to the nonlinear Munk problem. Hen
e, all

FE models 
onsidered are too dissipative for

nonlinear appli
ations. We also investigate

some of the in
uen
e of the \lumping" of

the mass matrix in FE models. Some au-

thors have stressed a loss in a

ura
y due to

lumped mass matri
es (Gresho et al., 1978).

We found that the use of mass lumping has

a detrimental in
uen
e on the double-gyre

experiments with the LW model. The stru
-

ture of the solution tends to be more realisti


when no lumping of the mass matrix is per-

formed.

We next 
onsidered a method based on

dis
ontinuous spe
tral elements. The SE

method introdu
ed in Chapter 2 shows a bet-

ter a

ura
y than FE and FD models for

n




> 3. The 
onvergen
e orders are not op-

timal though and vary between n




� 1 and

n




instead of n




+ 1. The SE model with

n




> 3 is more 
ost-e�e
tive than FE or FD

methods. This was demonstrated in a re
t-

angular geometry most favorable to the FD

model for a linear appli
ation. For the non-

linear Munk problem in a square basin, the

SE model is, however, more e�e
tive than

the C-grid FD model only at very high res-

olutions. The simple adaptive strategy we

developed in Se
tion 2.4.3 for the SE model,

and tested in the previous se
tion, gives en-


ouraging results. It is not nearly as 
ost-

e�e
tive to use 
ompared to a �xed mesh, but

it may be useful to resolve the �ne details of

the o
eani
 
ir
ulations whose lo
ations are

not a priori known. Hen
e this SE model

appear 
ost-e�e
tive to simulate nonlinear

o
eani
 
ows in irregular domains. The only

limitation though is that the model tends to

give poor results in presen
e of singular geo-

metri
al features like steps (see Se
tion 2.4.4)

and therefore requires 
ontinuously 
urved

boundaries.

The C-grid FD model using the vorti
ity-

divergen
e stress tensor and the enstrophy


onserving adve
tive s
heme might be a good


andidate for general o
ean modelling. The

loss of a

ura
y of se
ond-order FD meth-
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ods in presen
e of step-like geometry is less

than one order. This loss is less 
ompared

to that su�ered by the 4th order FD model.

A se
ond order FD model might thus still

be 
ompetitive 
ompared to intri
ate LBB-


omplying FE methods. However there are

other limitations. From Chapter 1 we know

that FD methods have problems represent-

ing the fast Kelvin modes if the resolution

is too low 
ompared to the radius of defor-

mation. Therefore, a FD model should have

many points resolving the radius of deforma-

tion, whi
h signi�
antly in
reases the 
ost.

However, in the 
ontext of the Munk prob-

lem, it is not 
lear how retarded Kelvin waves

a�e
t the steady state of the o
ean. We pro-

pose to further investigate these issues in the


ontext of the single gyre Munk problem in

Chapter 4.



Chapter 4

Finite Di�eren
e Methods in

Rotated Basins

In this 
hapter, we further investigate the

in
uen
e of steps on �nite di�eren
e mod-

els and, in parti
ular, we 
onsider the a
-


ura
y of model vorti
ity budgets for wind-

driven 
ir
ulations under the free-slip dy-

nami
 boundary 
ondition. Free-slip 
ir
u-

lations are typi
ally more energeti
 than no-

slip 
ir
ulations, e.g. Pedlosky (1996). He


onsidered the vorti
ity budget for a quasi-

geostrophi
 (QG) model. Simple s
aling ar-

guments reveal that vorti
ity is more eas-

ily 
uxed out of the basin when no-slip


onditions are employed. When there is a

net vorti
ity for
ing under free-slip 
ondi-

tions, therefore, stronger gyres are needed to

a
hieve the ne
essary vis
ous 
ux of vorti
-

ity a
ross the basin boundary. The vorti
ity

budget is also an interesting diagnosti
 tool

be
ause all the terms are in the form of do-

main integrals that 
an be transformed into

boundary integrals. This suggests that val-

ues of these integrals may be very sensitive to


oastline representation and that 
areful 
on-

sideration of the vorti
ity budget may give

further insight into the e�e
t of steps on the

overall strength of the gyres. The diÆ
ulty

is in deriving a vorti
ity budget 
onsistent

with the model's numeri
al formulation.

We propose to test di�erent formulations

for the adve
tive and di�usive terms for the

shallow water C-grid model detailed in Se
-

tion 4.2. Additionally, we use vorti
ity bud-

gets to investigate problems we found with

the B-grid model in Se
tion 4.3. Finally,

we draw some similarities with results from

a quasi-geostrophi
 (QG) FD model in Se
-

tion 4.4. Indeed, it may seem reasonable

that vorti
ity budgets are more a

urate in

QG models sin
e the vorti
ity equation is

solved instead of the primitive equations.

Se
tion 4.1, 4.2 and 4.4 are ex
erpts from a

paper we intend to submit to Tellus (the au-

thors are Fr�ed�eri
 Dupont, David N. Straub

and Charles A. Lin).

4.1 Introdu
tion

To date, there have been few studies fo
using

on the issue of 
oastline representation in �-

nite di�eren
e models. S
hwab and Belestky

(1998) studied the in
uen
e of steps on in-

vis
id Kelvin waves. Ad
roft and Marshall

(1998, hereafter referred as AM) addressed

the problem in the 
ontext of the single gyre

nonlinear Munk problem using a C-grid shal-

low water (SW) model. They showed (as

did Cox, 1979) that the horizontal 
ir
ula-

tion under no-slip boundary 
ondition is not

very sensitive to the presen
e of steps along

the 
oastline. This 
an be explained by the

fa
t that the 
ore of the boundary 
urrent

under no-slip is lo
ated a few grid points in-

side the interior of the basin.

For free-slip, however, they 
ompared re-

sults from non-rotated and rotated square

basin experiments and showed the 
ir
ula-

tion to be highly sensitive to the presen
e of

steps along the walls. In rotated basin exper-

iments, the basin was rotated relative to the

grid axes (see Fig. 2.1), but the wind for
-

ing and north-south axis were kept 
onstant

relative to the basin, so that the only di�er-

en
es between the experiments are due to the

dis
retization. The presen
e of steps along

47
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the boundary tends to redu
e the strength

of the 
ir
ulation to the extent that results

obtained using free-slip boundary 
onditions

with step-like boundaries more 
losely resem-

bles those with no-slip boundary 
onditions

than free-slip solutions without steps. More-

over, they showed that, at least for small ro-

tation angles, sensitivity to steps under free-

slip 
onditions 
ould be greatly redu
ed by

using a vorti
ity-divergen
e formulation of

the vis
ous stress tensor (Made
 et al., 1991),

hereafter referred as the Æ-� formulation.

We 
on
lude this se
tion with two re-

marks. The �rst 
on
erns the representa-

tion of the 
oastline in FD models. Some

methods exist to treat exa
tly a 
oast not

oriented along the dis
retization axes (e.g.,

Forrer and Jelts
h, 1998). These methods

have their own limitations su
h as time-step

limitation problems and the treatment of vis-


ous stresses at the boundary. However, the

emphasis of our study is not on developing

or investigating new FD models. The se
ond

issue relates to the kind of idealized experi-

ments we have performed. We have deliber-

ately introdu
ed arti�
ial steps in the model

boundary in these experiments. The pre
ise

appli
ability of our results to a real o
ean

basin with irregular 
oastline remains to be

determined.

4.2 Vorti
ity Budgets in a C-

grid SW Model

In this se
tion, we 
ompare the analyti
 vor-

ti
ity budget with the equivalent dis
retized

vorti
ity budget for a C-grid shallow water

(SW) model and explain why the two bud-

gets do not mat
h. We then give results

for the dis
retized vorti
ity budget and dis-


uss the impli
ations in terms of modelling

of wind driven gyres in presen
e of step-like


oastlines.

4.2.1 The General Form of the Dis-


retized Vorti
ity Budget

We 
onsider the shallow water equations

�

t

u+ u �ru+ fk� u+r(gh) =

�

h

+ �r

2

u (4.1)

�

t

h+r � (uh) = 0 (4.2)

where the variables are given in Table 2.1.

It is sometimes 
onvenient to re
ast the non-

linear terms in (4.3) in the following form:

�

t

u+ qk� (uh) +rB =

�

h

+ �r

2

u , (4.3)

where q and B are also given in Table 2.1.

The kinemati
 boundary 
ondition is no nor-

mal 
ow and the dynami
 boundary 
ondi-

tion is taken to be free-slip. The vorti
ity

equation is found by taking the 
url of (4.3),

�

t

� +r � (qhu) = k �r�

�

�r

2

u+

�

h

�

.

(4.4)

Upon integration of this equation over a


losed basin, the divergen
e of the potential

vorti
ity mass 
ux 
an
els out and we get

�

t

�

Z




�dxdy

�

= �

I

Æ


��

�n

dl +

I

Æ


� � dl

h

.

(4.5)

Eqns. (4.1-4.2) or (4.2-4.3) 
an be dis-


retized in di�erent ways. To simplify the

dis
ussion, we leave the time derivative being


ontinuous, and restri
t ourselves to the C-

grid. A useful general form of the SW equa-

tion is the following:

�

t

u+ C

u

+D

�

x

� =

�

x

h

x

+ F

x

(4.6)

�

t

v + C

v

+D

�

y

� =

�

y

h

y

+ F

y

(4.7)

�

t

h+D

+

x

U +D

+

y

V = 0 (4.8)

where C = (C

u

; C

v

) represents the

adve
tion-Coriolis terms, � represents a po-

tential fun
tion, F= (F

x

; F

y

) are the vis
ous

terms and other notation is des
ribed in Se
-

tion 2.2.2. The exa
t forms of C, � and F

depend on 
hoi
es made with respe
t to the

dis
retization. For example, � might rep-

resent the Bernoulli fun
tion or simply the
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pressure, depending on whether a formula-

tion based on (4.1) or on (4.3) is employed.

We �rst make a general point about numer-

i
al vorti
ity budgets and later dis
uss the

pe
uliarities spe
i�
 to 
hoi
es for C, � and

F. From (4.6) and (4.7) we write the dis-


retized vorti
ity equation

�

t

� = �D

�

x

C

v

+D

�

y

C

u

+D

�

x

F

y

�D

�

y

F

x

+D

�

x

�

�

y

h

y

�

�D

�

y

�

�

x

h

x

�

.

(4.9)

This equation is de�ned at interior �-nodes

(ex
luding the boundary nodes), be
ause it

requires de�ning momentum equations at all

neighboring velo
ity nodes (white squares in

Fig.4.1). Now we want to sum over all inte-

rior �-indi
es in order to get the model vor-

ti
ity budget. For simpli
ity, we write ve
-

tors in pla
e of x� and y� 
omponents, even

though the 
omponents are not dis
retized at

the same lo
ation (see Chapter2):

�

t

X

ij2


�

��x�y =

X

ij2Æ


�

(C+ F+

�

h

) ��l ,

(4.10)

where Æ


�

is the ensemble of indi
es repre-

senting the velo
ities nodes of the envelope of

the interior vorti
ity node domain, 


�

(bla
k

nodes in Fig.4.1). We rewrite (4.10) in a

more 
onvenient form by de�ning

F

adv

=

X

ij2Æ


�

C ��l , (4.11)

F

vis

=

X

ij2Æ


�

F ��l , (4.12)

F

i

=

X

ij2Æ


�

�

�

h

�

��l . (4.13)

Thus (4.10) be
omes

�

t

X

ij2


�

��x�y = F

i

+F

o

= F

i

+F

adv

+F

vis

.

(4.14)

F

i

(
ux in) is the wind input of vorti
ity and

F

o

(
ux out) is the sum of the vis
ous dif-

fusion 
ux, F

vis

, and of the adve
tive 
ux,

F

adv

. The important point here is to note

that F

adv

ideally should be zero sin
e it rep-

resents an adve
tive 
ux through the basin

lateral boundary. It is not zero in the numer-

i
al model be
ause the domain boundary for

the model vorti
ity budget is lo
ated half a

grid point inside the domain (see Fig. 4.1).

However, as the resolution in
reases, the re-

gion delimiting the vorti
ity budget domain

approa
hes the model boundary and, F

adv

should 
onverge to zero. How qui
kly this

o

urs will depend on the numeri
al formu-

lation.

It is always possible to approximate the

vorti
ity budget at the model boundary by

using o�-
entered derivatives and interpolat-

ing some of the variables to the boundary.

The model numeri
s, however, make no use

of variable values found by su
h an interpo-

lation and therefore, a vorti
ity budget 
al-


ulated in this way must be 
onsidered dis-

tin
t from the model vorti
ity budget. Su
h

a budget might misrepresent the 
ontribu-

tion of the di�erent terms of the dis
retized

equations of the model, espe
ially if the error

introdu
ed by the 
oastline dis
retization is

of lower order than are the trun
ation errors

of the model. For this reason, we prefer to

use the model vorti
ity budget. We note also

that the trun
ation errors in the model vor-

ti
ity budget are larger than the trun
ation

errors in solving the shallow water equations,

sin
e vorti
ity is a higher order variable.

Figure 4.2 
ompares the rotated and non-

rotated basin 
ases. The integrand (C ��l|

i.e. the lo
al F

adv

) is plotted as a fun
tion

of distan
e around the basin perimeter and

the position of the steps is evident from the

abrupt jumps in the integrand value. When

summed along the perimeter, F

adv

is non-

zero and is larger for the rotated basin ex-

periment 
ompared to the non-rotated basin

experiment. Starting from this observation,

we are interested in quantifying the impor-

tan
e of the steps over the global vorti
ity

budget. First, as in
reased resolution leads

to more steps, and due to the singular be-

havior of C ��l 
lose to steps, it is no longer

obvious that F

adv


onverges to zero with in-


reasing resolution. From this point of view,

F

adv

is probably very sensitive to the formu-

lation of the adve
tive terms in (4.10), and

extension in (4.1,4.3). Se
ond, we want to

investigate whether the overall 
ir
ulation is

sensitive to the presen
e of an extra term in

the global vorti
ity budget, as F

adv


an be a

sour
e or a sink term, depending on its sign.
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4.2.2 Numeri
al Formulations

We are interested in applying di�erent for-

mulations for the adve
tion-Coriolis terms

sin
e we noted that F

adv

was generally non-

zero for the single gyre Munk problem, with

the integrand being parti
ularly large at

steps. The two adve
tive numeri
al s
hemes

that we 
onsider are the 
onventional formu-

lation (based on Eq. 4.1) and the potential

enstrophy 
onserving formulation (based on

Eq. 4.3).

In addition to testing for sensitivity to the


hoi
e of adve
tive s
hemes, we also 
onsider

di�erent formulations of the stress tensor.

That the overall 
ir
ulation is primarily sen-

sitive to the formulation of the stress tensor

is the main result of AM, who found that the

Æ-� formulation gave better results than the


onventional formulation. We refer to Gent

(1993) and Sh
hepetkin and O'Brien (1996)

for a more 
omplete dis
ussion on appropri-

ate vis
ous stress tensor formulations for the

shallow water equations and we limit our-

selves to the two stress tensor formulations

used by AM. Below, we review these two for-

mulations. Thus, we are interested in testing

four 
ombinations of two adve
tive and two

di�usive formulations. Table 4.1 summarizes

these four di�erent 
ombinations.

With respe
t to the adve
tion-Coriolis

terms, we 
ompare the 
onventional formu-

lation to the potential enstrophy 
onserving

formulation of Sadourny (1975). For the 
on-

ventional formulation, C and � are given by

8

>

<

>

:

C

u

= uD

o

x

u+ v

x

y

D

o

y

u� fv

x

y

C

v

= uD

o

x

v + v

x

y

D

o

y

v + fv

x

y

� = gh ,

(4.15)

and for the potential enstrophy 
onserving

formulation, C and � are given by

8

>

>

<

>

>

:

C

u

= �q

y

V

x

y

C

v

= q

x

U

x

y

� = gh +

1

2

(u

2

x

+ v

2

y

) .

(4.16)

Both formulations ensure a se
ond order a
-


ura
y to the dis
retized SW equations. For

the 
onventional formulation, 
hanges are

made to in
orporate the boundary 
ondi-

tions at se
ond order of a

ura
y, by using

o�-
entered di�eren
ings 
lose to the bound-

ary. No boundary 
ondition for the vorti
-

ity is required. However, sin
e the enstrophy


onserving s
heme expli
itly uses the vorti
-

ity, this formulation requires that vorti
ity

be spe
i�ed at boundary points. We 
hoose

to set the relative vorti
ity to zero along the

model boundary, whi
h is 
onsistent with the

free-slip boundary 
ondition along straight

walls. Also, 
ontrary to the 
onventional

formulation, no o�-
entered di�eren
ing is

needed at the boundary for the 
omputation

of C.

The two numeri
al formulations that we


onsider for the vis
ous terms are the

divergen
e-vorti
ity tensor formulation of

Made
 et al. (1991) and the 
onventional

�ve-point Lapla
ian. For the latter,

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

r

2

u

ij

=

u

i�1;j

� 2u

ij

+ u

i+1;j

�x

2

+

u

i;j�1

� 2u

ij

+ u

i;j+1

�y

2

r

2

v

ij

=

v

i�1;j

� 2v

ij

+ v

i+1;j

�x

2

+

v

i;j�1

� 2v

ij

+ v

i;j+1

�y

2

.

(4.17)

As with the 
onventional adve
tion formu-

lation, 
hanges are made here to in
orpo-

rate the boundary 
onditions at se
ond or-

der a

ura
y, by using o�-
entered di�eren
-

ings. Another te
hni
al remark 
on
erns the

treatment of velo
ity points 
lose to tips of

land. For those points (the u and v points of

Fig. 4.3), the tip of the land is half a grid 
ell

away. Let us fo
us on the u-point. The prob-

lem is to evaluate the Lapla
ian of u at this

point. A �ve-point Lapla
ian requires knowl-

edge of �u=�y in the 
enter of the northern

and southern sides of the 
ell surrounding

the u-point, and �u=�x on the eastern and

western sides. The problem lies with �u=�y

on the northern side. The usual treatment

would have

�u

�y

�

�

�

�

north

=

u

i;j+1

� u

ij

�y

(4.18)

whi
h simpli�es to

�u

�y

�

�

�

�

north

= �

u

ij

�y

, (4.19)

be
ause of the impermeability 
ondition

whi
h sets u

i;j+1

to zero. Alternatively, one
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might take impermeability to imply that the

tip is a stagnation point, in whi
h 
ase an

o�-
entered di�eren
ing leads to

�u

�y

�

�

�

�

north

= �

2 u

ij

�y

. (4.20)

A third logi
al possibility would be to apply

the free slip 
ondition at the tip to 
on
lude

that

�u

�y

�

�

�

�

north

= 0 . (4.21)

We 
hoose the latter (4.21), in order to let

the \
uid" slip as mu
h as possible along the

walls sin
e the �rst two 
onditions (4.19,4.20)

tend to slow down the boundary 
urrents. A

more a

urate formulation of the boundary


ondition 
lose to the steps 
an be derived us-

ing a �nite volume formulation, whi
h treats

the northern vis
ous 
ux as a mean between

(4.19) and (4.21). However, this would slow

down the boundary 
urrent due to the use of

(4.19). In addition, more a

urate treatment

of the steps have limited value as the steps

are arti�
ial.

The divergen
e-vorti
ity (Æ-�) form of the

stress tensor leads to the following form for

the Lapla
ians

(

r

2

u

ij

= D

�

x

Æ �D

+

y

�

r

2

v

ij

= D

�

y

Æ +D

+

x

�

(4.22)

where Æ is the divergen
e expressed at the h-

lo
ation (
enter of the 
ell). This formulation

is more general in the sense that there is no

adjustment of the formulation at the bound-

ary. Another remark 
on
erns the 
ase of

straight walls. In that parti
ular 
ase, there

is no di�eren
e between the Æ-� stress tensor

formulation and the traditional formulation.

The di�eren
e is in the treatment of steps.

To illustrate this, we 
onsider a 
ompar-

ison between the two stress tensor formula-

tions for a forward step along a north-
owing

western boundary 
urrent. Choose (i; j) so

that, in Figure 4.3, the �-point right at the

tip of the land 
orner would have (i; j+1) in-

di
es (see Fig. A.1 for indi
es arrangement).

Thus, the vis
ous terms under the Æ-� formu-

lation are

8

>

<

>

:

r

2

u

ij

= 
onventional part +

v

i;j+1

�x�y

r

2

v

i;j+1

= 
onventional part +

u

ij

�x�y

,

(4.23)

where the additional terms are positive.

These additional terms represent a forward-

a

eleration. As AM noted, a serious in
on-

venien
e of the 
onventional formulation is

that, in presen
e of steps, there is \extra dif-

fusion" of momentum due to additional ve-

lo
ity points set to zero at the boundary (the

impermeability 
ondition), as 
ompared to

the straight wall 
ase. This extra di�usion is

responsible for slowing down the boundary


urrents. Therefore, the a

elerating terms

of the Æ-� formulation partly 
ompensate the

de
elerating terms of the 
onventional formu-

lation.

A �nal remark is that the divergen
e part

of the vis
ous for
es 
an
els out in the vor-

ti
ity equation. Therefore, in the dis
retized

vorti
ity equation, the Æ-� formulation leads

to a vis
ous term that takes the form of the

�ve-point Lapla
ian of the vorti
ity. This is

not true of the 
onventional formulation.

4.2.3 Results

By studying F

adv

, we want to address several

issues related to the a

ura
y of the di�er-

ent 
ombinations of the adve
tion and di�u-

sion formulations and their in
uen
e on the

strength of the overall 
ir
ulation. Firstly, a

major requirement is that, whatever the ge-

ometry of the basin, F

adv

should 
onverge to

zero as the resolution goes to in�nity. This

test allows us to rank the performan
es of

the model for the di�erent 
ombinations of

adve
tive and di�usive s
hemes. Of parti
u-

lar interest will be the importan
e of the ad-

ve
tive formulation. A se
ond 
on
ern is to

assess whether the size of the arti�
ial sour
e

or sink of vorti
ity due to F

adv

in
uen
es the

overall strength of the gyres. A third 
on
ern

relates to the general a

ura
y of model vor-

ti
ity budgets.

To address these issues, we make use of

the 
on
eptual experiment proposed by AM,

in whi
h a single gyre Munk 
ir
ulation is
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Model

Adve
tion

form

Stress

tensor form

A

enstrophy

preserving

adve
tion


onventional

stress

tensor

formulation

B

enstrophy

preserving

adve
tion

Æ-� stress

tensor

formulation

C


onventional

adve
tion


onventional

stress

tensor

formulation

D


onventional

adve
tion

Æ-� stress

tensor

formulation

Table 4.1: The four 
ombinations of adve
-

tion formulations and stress tensor formula-

tions.


omputed in rotated and non-rotated square

basins. In both 
ases, all parameters and

for
ing are un
hanged ex
ept for the dis-


retized 
oastline. The four 
ombinations

(A, B, C, D) of numeri
al formulations we

propose to test are detailed in Table 4.1.

One remark 
on
erns the non-rotated basin

results. There, sin
e the 
onventional and

Æ-� stress tensor formulations are identi
al,

the results for the B 
ombination are identi-


al to the results for A. The same applies for

the C and D 
ases.

We reprodu
e the results of AM in Fig-

ure 4.4. This �gure shows the elevation �elds

for the A and B 
ases and for no rotation and

a small rotation angle of 3.4

o

. Clearly, the A


ase shows 
ir
ulation patterns 
ollapsing as

the number of steps along the walls in
reases

whereas, for the B 
ase, the 
ir
ulation is

quite similar to the original non-rotated 
ir-


ulation. The results for C are not shown

but are very similar to the results for A. The

results for D show a small in
rease in the

strength of the gyre 
ompared to A, but the

original overall 
ir
ulation of A-B with no ro-

tation is not re
overed (not shown).

Figure 4.5a shows the kineti
 energy as a

fun
tion of resolution for the various 
ombi-

nations and for a rotation angle of 3:4

o

. Only

the B 
ombination 
onverges to non-rotated

solutions. The A and C results are almost

identi
al, but appear to 
onverge to a kineti


energy that is redu
ed by over a fa
tor of 2


ompared to the non-rotated 
ases. For the

D 
ombination, kineti
 energy de
reases and

then tends to slightly in
rease with in
reas-

ing resolution and is generally mu
h lower

than for A-B with no rotation or B with ro-

tation.

As mentioned, the �rst 
onsisten
y test re-

lated to the vorti
ity budget is to verify that

F

adv


onverges to zero with in
reasing res-

olution. For all rotation angles 
onsidered

and for the B 
ombination, this statement

appears to be true. For the other 
ombi-

nations (A, C, D), su
h is not the 
ase, at

least for 
ertain angles. For instan
e, F

adv

tends to in
rease or stay 
onstant for the A,

C and D 
ombinations at 3:4

o

(Fig. 4.5b).

For the D 
ase, F

adv

in
reases dramati
ally

with in
reasing resolution |so mu
h that

F

adv

be
omes larger than the wind input.

Asso
iated with this is a reverse (negative)

vis
ous 
ux. This behavior may have 
on-

sequen
es on the stability of the model. Al-

though no obvious numeri
al instabilities o
-


urred for a rotation angle of 3:4

o

, numeri-


al instabilities 
ause the model to 
rash for

other angles, for example at �30

o

. It seems

plausible that this behaviour is asso
iated

with the large (and opposing) adve
tive and

di�usive 
uxes of vorti
ity near the model

perimeter. In any event, it seems reasonable

to 
on
lude that the D 
ombination is in-

appropriate. This implies that the Æ-� vis-


ous formulation performs well only when

used is 
onjun
tion with the enstrophy 
on-

serving adve
tion. This �nding 
omplements

that of AM. For the A and C 
ombinations

(Fig. 4.5b), F

adv

does not 
onverge toward

zero with in
reasing resolution. Hen
e, these

two 
ombinations seem inappropriate, even

if the resulting solutions are always stable.

We now address the issue of possible 
or-

relation between F

adv

and the kineti
 energy.

Given that inertial runaway (the inability of

simple models of the o
ean to 
onverge to

a reasonable statisti
al mean solution as the

eddy vis
osity is de
reased to the real value

of the vis
osity found in water) appears to

be related to \diÆ
ulties" in balan
ing the
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global vorti
ity budget (Pedlosky, 1996), it

seems reasonable to ask whether the sign of

F

adv

is 
orrelated with an indi
ator of the

overall strength of the gyre, su
h as total

kineti
 energy. For example, when F

adv

is

negative, it adds to the wind input of vor-

ti
ity and one might expe
t a stronger gyre

to result. Some eviden
e that this may be

the 
ase is found by 
omparing B and D,

whi
h share the same formulation of the vis-


ous terms. Figure 4.5b shows that F

adv

is

positive and larger for D than is the 
ase

for 
ombination B. Thus the total wind plus

adve
tive input of vorti
ity to the basin is

stronger in 
ase B. As might have been an-

ti
ipated, B shows a more energeti
 
ir
ula-

tion (Fig. 4.5a). It is also interesting to see

whether there is any 
orrelation between ki-

neti
 energy and the sign/strength of F

adv

for a given formulation of the numeri
s. We

restri
t this dis
ussion to the use of the B


ombination. From �gures 4.6 and 4.7, whi
h

show the kineti
 energy and adve
tive/wind

vorti
ity input ratio for a range of resolution

and rotation angles, there does not appear to

be any striking 
orrelation. In parti
ular, if

we fo
us on the region of negative values of

F

adv

(i.e., for a 
ase where F

adv

has the same

sign as the wind input), the kineti
 energy

for this region is not larger than the kineti


energy at the same resolution but for an op-

posite angle (in fa
t, the kineti
 is slightly

lower). Presumably the added adve
tive 
ux

in this region is lo
ally balan
ed by the vis-


ous terms, so that pro
esses analogous to

those thought to be responsible for inertial

runaway do not lead to an in
rease in the

overall strength of the gyre.

To 
on
lude this se
tion, we investigate

the general a

ura
y of model vorti
ity bud-

gets with respe
t to F

adv

using the B 
om-

bination, only, sin
e this 
ombination is the

only one showing a robust 
onvergen
e to

zero with in
reasing resolution. As F

adv

should ideally not be present in the vorti
-

ity budget, the vis
ous 
ux, F

vis

, 
an be ei-

ther underestimated or overestimated (whi
h

modi�es the lo
al balan
e at the wall and

therefore the strength of the gyre) and F

adv


an be viewed as an error. From Figure 4.8

and for the range of resolution we used, F

adv

varies between 5% and 50% of the wind in-

put. The order of the 
onvergen
e for F

adv

with in
reasing resolution is fairly 
lose to

unity or slightly lower for all positive angles.

For negative angles, we did not 
ompute the


onvergen
e order be
ause F

adv

goes through

a minimum (Figure 4.7) and had not asymp-

toted to an uniform 
onvergen
e order at the

highest resolutions we 
onsidered. A note-

worthy point is that the e�e
t of in
reasing

the rotation angle (introdu
ing more steps)

seems to de
rease the 
onvergen
e order (1/2

at 20

o

). Paradoxi
ally, however, the 
onver-

gen
e order in
reases again to rea
h unity for

45

o

, the rotation angle at whi
h the number

of steps is maximum. In fa
t, at this angle

F

adv

even shows a negative o�set 
ompared

to the 0

o

angle.

Ex
ept for e�e
ts related to step-like

boundaries, that the 
onvergen
e order is

unity follows dire
tly from the order of dis-


retization of the vorti
ity. Sin
e the vor-

ti
ity is one order higher a variable than is

velo
ity, and sin
e the velo
ity is 
omputed

at se
ond order a

ura
y, it follows that the

vorti
ity is at best a

urate to �rst order.

Therefore, F

adv


an be 
onsidered an expli
it

�rst order (at best) error in the vorti
ity

budget. For the B 
ombination, we observe

that the 
onvergen
e order for F

adv

varies

between 1/2 and unity, depending on the ro-

tation angle. In the 1/2 order 
ase, errors (or

dis
repan
ies) vary between 25% (high reso-

lution) and 50% (
oarse resolution) and, in

the �rst order 
ase, they vary between 6%

and 22%. The errors are mu
h larger for

the other 
ombinations and 
an rea
h 100%.

This implies that the a

ura
y of 
omput-

ing vorti
ity budgets from primitive equa-

tions models is fairly low, espe
ially in ab-

sen
e of attention to the numeri
s. These

errors may also vary a lot 
onsiderably with

the dis
retized domain geometry.

4.3 Vorti
ity Budgets in SW

B-grid Models

This se
tion stems from our interest in gen-

eralizing our experien
e from C-grid vorti
-

ity budgets to the B-grid (see Se
tion 2.2.2).

Under free-slip boundary 
onditions, the

main diÆ
ulties arise from the fa
t that a

prognosti
 equation for the tangential velo
-

ity along the wall has to be solved. This

equation requires values of the pressure gra-

dient along the wall, although the nearest el-

evation points are half a grid 
ell away in the
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interior. The zero-order solution is to use

the same elevation value as at the nearest

interior point, but this solution yields un-

reasonable shears of the tangential velo
ity


lose to the wall. In fa
t, the 
urrent along

the wall tends to be zero or opposite to the

overall gyre 
ir
ulation. The problem stems

from a poor representation of the geostrophi


balan
e along the wall. For the 
urrent to

be maximal at the wall, the pressure at the

wall has to be larger than the pressure at the

interior points. However, sin
e the free-slip

boundary 
ondition yields a zero normal gra-

dient for the tangential velo
ity, this means

that the se
ond derivative normal to the wall

of the pressure should be approximately zero.

Therefore, the pressure varies nearly linearly

in the normal dire
tion to the wall.

We therefore tested a simple linear extrap-

olation, using two interior pressure points.

This approximation gives better results in

the sense that there is no longer opposite


urrents along the wall. However the over-

all solution does not 
onverge to the solu-

tion obtained with the C-grid model. Af-

ter six years of simulation, the kineti
 en-

ergy is three times as mu
h as for the C-

grid model (see Table 4.2). The 
ir
ulation

is too strong. From a vorti
ity budget per-

spe
tive, the model 
annot 
ux out the wind

input of vorti
ity. The reason may 
ome from

the presen
e of a pressure term in the vor-

ti
ity budget whi
h a
ts as a torque

1

. This

term should normally be zero. It arises from

the non-
an
ellation of the pressure gradient

terms 
lose to ea
h 
orner of the basin. This

term is negative and therefore a
ts the same

way as the wind input (see Table 4.2). It

might be that the small dis
repan
y 
aused

by the presen
e of this pressure term in the

vorti
ity budget is enough that the model


annot 
onverge to a reasonable solution.

Nonetheless, we noted that the magnitude

of this term de
reases with resolution and

might explain why the kineti
 energy tends

to de
rease with in
reasing resolution. Due

to the diÆ
ulty of tuning this free-slip B-grid

model, we qui
kly gave up the idea of gen-

eralizing the experiments performed in the

previous se
tions to the B-grid.

We noted however that some authors

ta
kle the problem of the B-grid under

1

The adve
tive and Coriolis 
ontribution to the

vorti
ity is zero for the B-grid. See Appendix B.

�x 20 km 10 km 5 km

K.

Energy

in 10

10

m

5

s

�2

| 2617 2473

FI

in m

2

s

�2

| �0:2647 �0:2606

FO

in m

2

s

�2

| 0:2639 0:2604

Pressure

term in

m

2

s

�2

|

�2:388

�10

�3

�1:238

�10

�3

Table 4.2: Summary of the vorti
ity budget

and kineti
 energy diagnosti
s for the B-grid

after a spin-up of 6 years. Instantaneous val-

ues after a 6 year spin-up. The model vor-

ti
ity budget on a B-grid in
ludes a pressure

term due to the non-
an
ellation of the pres-

sure gradient at the 
orners of the domain.

free-slip boundary 
onditions. Hsieh et al.

(1983), for instan
e, suggest the idea of

shifting the whole grid, so that elevation

points are on the boundary instead of ve-

lo
ity points. The trouble then is that we

lose the main advantage of the traditional B-

grid whi
h is that the region for the vorti
ity

budget domain is exa
tly the model domain.

Using the traditional implementation of the

B-grid, there is no adve
tive 
ux of vorti
ity.

More re
ently, Be
kers (1999) proposes to

keep the traditional B-grid and to iterate at

ea
h time-step in order to get elevation val-

ues at land points 
lose to the boundary that

yield a zero normal velo
ity. This solution is

of 
ourse more expensive. Unfortunately, we

did not try to implement one of these so-

lutions sin
e our attention was already fo-


used on more 
omplex numeri
al methods.

It is suÆ
ient to note that implementation

of free-slip boundary 
onditions are not triv-

ial on B-grids. This adds to problems en-


ountered with a similar implementation in

a A-grid (see Se
tion 3.4). Thus the free-slip

boundary 
ondition does not seem to be su
h

an easy 
ondition to implement in general in

any model.
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4.4 The Quasi-Geostrophi


Model

4.4.1 Dis
retization

We also investigated the in
uen
e of 
oast-

line dis
retization in quasi-geostrophi
 (QG)

models, although our main interest in this

thesis is fo
used on the shallow water (SW)

models. QG models solve the vorti
ity equa-

tion dire
tly. It seems therefore a reasonable

assumption that these models should yield

more a

urate vorti
ity budgets than do SW

and primitive equation models. The vorti
-

ity equation used is

�

t

�+J( ; �)+��

x

 = �r

2

�+k�r�(�=h) ,

(4.24)

where  is the streamfun
tion. Equa-

tion 4.24 
orresponds to a barotropi
 and

geostrophi
 o
ean with a rigid lid approxi-

mation. The wind for
ing is altered to in-


lude the in
uen
e of the water depth in or-

der to better mimi
 the shallow water equa-

tions. The dis
retization of (4.24) is done

using se
ond order 
enter di�eren
ings. The

streamfun
tion formulation (� = r

2

 ) leads

to a linear pentagonal system of equations

to solve at ea
h time step. We used the sim-

ple leapfrog time integration and the vis
ous

term is dis
retized by the 
onventional �ve-

point Lapla
ian. We are interested in test-

ing di�erent formulations of the Ja
obian in

(4.24), as the formulation of this term may

have 
onsequen
es for the vorti
ity budget

for the same reasons mentioned previously

for the C-grid model.

As for the SW C-grid model, the vorti
ity

budget for the QG model is de�ned only on

an interior sub-domain, half a grid point in-

side the model basin. This follows from the

fa
t that the vorti
ity equation is only solved

at interior points (see Figure 4.1). The dis-


retized vorti
ity budget is

X

ij2


�

�

t

��x�y =

X

ij2


�

[�J � �D

o

x

 + �r

2

�

+D

o

x

(�

y

=h) �D

o

y

(�

x

=h) ℄ �x�y ,

(4.25)

where notation is found in Se
tion 2.2.2 and




�

is the ensemble of indi
es for points whose

lo
ation lies in the interior domain. By de�n-

ing

F

0

adv

= �

X

ij2


�

J�x�y (4.26)

F

vis

=

X

ij2


�

�r

2

��x�y (4.27)

F




=

X

ij2


�

��D

o

x

 �x�y (4.28)

F

i

=

X

ij2


�

�

D

o

x

(�

y

=h)�D

o

y

(�

x

=h)

�

�x�y , (4.29)

we re
ast the vorti
ity budget in the follow-

ing form

X

ij2Æ


�

�

t

��x�y = F

0

adv

+ F




+ F

vis

+ F

i

.

(4.30)

One main 
hara
teristi
 of QG vorti
ity bud-

gets is the expli
it 
ontribution of the beta

term, F




. This 
ontribution is hidden in F

adv

for the SW models. Therefore, we de�ne

F

adv

here to be F

adv

= F

0

adv

+ F




, where

F

0

adv

represents the integration of the Ja
o-

bian term over 


�

. We fo
us our study on the

behavior of both F

0

adv

and F




. As for the C-

grid model, a minimum requirement is that

F

adv

goes to zero at in�nite resolution. This

also applies to F

0

adv

and F




separately. We

propose to test three di�erent numeri
al for-

mulations of the Ja
obian, J

1

, J

3

and J

7

, as

termed by Arakawa and Lamb (1977) (here-

after, AL77) and investigate their respe
tive

in
uen
e on the vorti
ity budget. Other dis-


retization te
hniques exist that nullify F




,

su
h as that developed by Salmon and Tal-

ley (1989), but we fear that those te
hniques

miss the point that the vorti
ity budget 
an

not 
learly be de�ned in the sub-region along

the boundaries. Su
h a te
hnique may re-

du
e the a
tual size of the model domain to

the point that the 
riti
al sub-region disap-

pears.

Representation of the Ja
obian in (4.25)

has been extensively 
onsidered by Arakawa

(1966) and AL77. From the latter, we bor-

row the notation J

i

, where J is the dis-


retized Ja
obian and i takes values between

1 to 7, depending on the dis
retized formu-

lation. The simplest representation is the J

1
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Ja
obian, where

J

1

= D

o

x

�D

o

y

 �D

o

y

�D

o

x

 . (4.31)

J

1


onserves relative vorti
ity in doubly peri-

odi
 domains, straight 
hannels and re
tan-

gular domains when the free-slip boundary


ondition is applied. In fa
t, F

0

adv

is zero

for zero rotation angle be
ause  and � are

both zero at the boundary. However, due to

its poor 
onservation properties (energy and

enstrophy), other forms of the Ja
obian have

been suggested.

AL77 proposed the J

3

form of the Ja
o-

bian whi
h 
onserves energy in doubly peri-

odi
 domains

J

3

= D

o

x

(�D

o

y

 )�D

o

y

(�D

o

x

 ) . (4.32)

The J

3

Ja
obian 
onserves relative vorti
ity

in doubly periodi
 domains, but not in pres-

en
e of boundaries. The boundary terms

that arise are relatively easy to pinpoint.

They 
orrespond to the value �D

o

y

 or �D

o

x

 

at lo
ations one grid point away from the

boundaries.

It is interesting to note that the J

3

for-

mulation is similar in stru
ture to the adve
-

tive terms in the SW vorti
ity equation when

the B 
ombination, dis
ussed above, is em-

ployed. For example, if we take u

�

= �D

o

y

 

and v

�

= D

o

x

 , then J

3


an be re
ast as J

3

=

D

o

x

(�u

�

) +D

o

y

(�v

�

). The adve
tive term for

the B 
ombination in the vorti
ity equation

takes the form of D

o

x

(q

y

V

x

y

) + D

o

y

(q

x

U

x

y

).

Hen
e the two formulations use a divergen
e

form of the adve
tion. Moreover, the vis-


ous term in the SW vorti
ity equation de-

rived using the Æ-� stress tensor formulation

is similar to the vis
ous term in the QG equa-

tion. Spe
i�
ally, both take the form of a

�ve-point Lapla
ian of vorti
ity. Hen
e, we

expe
t that the results of the J

3

-QG model

should be similar to those of the SW model

using the B 
ombination. Unfortunately,

there is no straight forward analog between

the 
onventional adve
tion for C-grid and

any of the Ja
obian operators suggested by

AL77. Therefore, we did not note any other

possible 
onne
tions between spe
i�
 aspe
ts

of the QG and the SW numeri
al formula-

tions.

The last Ja
obian formulation we propose

to test is the J

7

and may be given as

J

7 ij

=

1

12�x�y

[

�

i+1;j

( 

i;j�1

+  

i+1;j�1

�  

i;j+1

�  

i+1;j+1

)

��

i�1;j
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i�1;j�1
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i;j�1

�  

i�1;j+1

�  

i;j+1

)

+�
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+  
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�  
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�  
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)

��
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�  
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)

+�
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��
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�  
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)

��
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i+1;j

�  
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)℄

(4.33)

This more intri
ate formulation (Arakawa,

1966) is known to 
onserve both the en-

ergy and the enstrophy in doubly-periodi


domains. The J

7

Ja
obian also 
onserves

relative vorti
ity in doubly periodi
 domain,

but not in 
losed domains where 
ompli
ated

boundary terms in F

0

adv

arise. This formula-

tion is very popular and is adopted in most

QG models.

4.4.2 Results

Using J

1

, the solutions are very di�erent

for positive and negative values of the rota-

tion angle of the basin. Positive angles are


hara
terized by larger kineti
 energy and

stronger os
illations of a Rossby basin mode

(
urve b of Figure 4.9), whi
h appears to be

unstable at low resolution. However, with in-


reasing resolution (
urves d-f of Figure 4.9),

the kineti
 energy for both positive and neg-

ative angles seems to 
onverge to the value

of kineti
 energy for the non-rotated basin


ases (
urves a,d). Nonetheless, we prefer to

dis
ard this formulation of the Ja
obian for

the rest of the dis
ussion, due to its low level

of a

ura
y at moderate resolutions.

On the other hand, solutions using J

3

and

J

7

appear stable and 
onverge reasonably

well with in
reasing resolution to the same

value of kineti
 energy, for both rotated and

non-rotated basins (Fig. 4.10). Therefore,

this results 
ontrasts with those of the SW

model for whi
h the 
onvergen
e was only
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obtained for the B 
ombination. The QG

model appears to be less sensitive to grid ro-

tations and adve
tive formulations.

In terms of vorti
ity budget, we are inter-

ested in the behavior of the adve
tive 
ontri-

bution, F

adv

, with in
reasing resolution for

the J

3

and the J

7

Ja
obians. Spe
i�
ally, we

are interested in how the 
onvergen
e order

for F

adv

di�ers in the QG model 
ompared to

the SW model. As mentioned, F

adv

is made

of two independent 
ontributions, F

0

adv

and

F




. F

0

adv

depends dire
tly on the Ja
obian

formulation but F




does not. Figure 4.11

shows the 
onvergen
e of F

0

adv

in rotated and

non-rotated basins for the two 
onsidered Ja-


obians. F

0

adv

is 
lose to se
ond order in non-

rotated basins for both Ja
obians. At 30

o

rotation, however, the 
onvergen
e order is


loser to unity for J

3

but se
ond order for

J

7

.

We now analyze the 
onvergen
e order for

F




, the se
ond 
ontribution to F

adv

. Fig-

ure 4.12 shows the 
onvergen
e for F




in ro-

tated and non-rotated basins under J

3

and

J

7

. The results appear independent of the

Ja
obian formulation, as expe
ted. The 
on-

vergen
e order is however unity, in 
ontrast

with results for F

0

adv

. This result 
omes read-

ily from the traditional treatment of the �

term. The proof is given in a square domain:

�

X

ij2Æ


�

D

o

x

 �x�y =

�

X

j

i=n

x

�1

X

i=2

 

i+1

�  

i�1

2�x

�x�y =

�

X

j

 

n

x

�1

�  

2

2

�y ,

(4.34)

sin
e  

1

=  

n

x

= 0, by de�nition of no-

permeability. The west-east asymmetry due

to the beta e�e
t imposes that  

n

x

�1

= a 

2

with 0 < a < 1 and all other parameters kept


onstant. The fa
tor, a, represents the ratio

of the velo
ity along west and east 
oastline.

Be
ause  

n

x

�1

and  

2


onverge linearly to

zero with in
reasing resolution, the beta 
on-

tribution 
annot have a better 
onvergen
e

rate than one. In absolute value, F




is also

larger than F

0

adv

. Therefore, F

adv

su�ers pri-

marily from the low 
onvergen
e rate of the

beta 
ontribution, F




. One 
an ask whether

we 
an get a better 
onvergen
e order by

in
luding the planetary vorti
ity, �y in the

Ja
obian instead of treating it separately

(J( ; �+�y) instead of J( ; �)+��

x

 ). We


ondu
ted this experiment with the best ad-

ve
tive formulation, the J

7

. However, 
on-

vergen
e order of F

adv

is again unity and er-

rors are very similar to the previous 
ase (not

shown).

One last point we would like to make is

related to similarities mentioned above, be-

tween the J

3

-QG and the B 
ombination of

the SW model. Figure 4.14 shows F

0

adv

, F




and F

adv

with in
reasing resolution for J

3

and under -30

o

rotation angle. F

0

adv

is neg-

ative, goes through an minimum and, then

in
reases toward zero, whereas F




is positive

and de
reasing to zero. Hen
e, F

adv

appears

to go through a pool of negative values, just

as the B results showed. This 
ontrasts with

results using J

7

for whi
h F

0

adv

takes positive

values for both negative and positive rotation

angle (not shown).

To 
on
lude, ex
ept for the J

1

Ja
obian,

the QG model is less sensitive to the basin

rotation, in 
ontrast with results for the SW

model. Convergen
e orders for the adve
-

tive 
ux of vorti
ity, F

adv

, on the other hand,

are order 1 or less|
omparable to what was

found for the SW simulations. In the QG


ase, this low order of 
onvergen
e is related

to the beta 
ontribution, F




. Using J

7

, jF

adv

j

varies between 5% (high resolution) and 20%

(
oarse resolution) of the wind input depend-

ing on the rotation angle. These results are

somewhat better than those obtained in the

SW simulations.

4.5 Dis
ussion and Con
lu-

sion

Due to their fra
tal nature, realisti
 
oast-

lines have features down to the model reso-

lution. While the ultimate goal would be to


orre
tly a

ount for su
h features in models,

a less stringent test is that models should

be able to deal with simple geometries, in

a manner that is not sensitive to arti�
ial

steps introdu
ed by the dis
retization. Su
h

was the study of AM, based on free-slip sin-

gle gyre Munk experiments. As we noted
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that there was an in
onsisten
y in the dis-


retized vorti
ity budget for the C-grid shal-

low water model, we de
ided to revisit the

AM results in terms of global vorti
ity bud-

gets with varying resolution. Our goal was

to investigate the in
uen
e of the formula-

tion of the adve
tive and vis
ous terms on

the model vorti
ity budget and the overall

strength of the gyre.

AM showed that the 
onventional vis
ous

stress tensor formulation was inappropriate

in the rotated basin 
ase, for steps o

ur-

ring along the 
oast. Moreover, they made

use of an alternative stress tensor formula-

tion (
alled herein Æ-� tensor) and showed

improved results. We analyzed further the

di�eren
e between 
onventional and Æ-� ten-

sor formulation along with two di�erent for-

mulations of the adve
tion in the momentum

equations in term of global vorti
ity budgets

with varying resolution. One observation is

that the results with the Æ-� stress tensor

depend strongly on the formulation of the

adve
tion, as the 
onventional adve
tion for-

mulation leads to instability (the D 
ombina-

tion). Therefore, the formulation of the ad-

ve
tion seems equally important in explain-

ing the AM results. In terms of vorti
ity bud-

gets, all 
ombinations seem to be ill-behaved

ex
ept for the enstrophy 
onserving adve
-

tion and the Æ-� tensor (the B 
ombination).

For this 
ombination, the 
onvergen
e order

for F

adv

is about unity, following the trun
a-

tion order of the vorti
ity when derived from

se
ond order velo
ity.

For the QG model, the overall 
ir
ulation

is less sensitive to the rotation of basin for all

Ja
obians we tried. In order of in
reasing a
-


ura
y, J

1

gives the lowest level of a

ura
y

(showing even signs of instability at low reso-

lution), followed by J

3

and then J

7

. The best


onvergen
e order for F

0

adv

was obtained by

using the J

7

Ja
obian and was about 2, for

all rotation angles. The beta 
ontribution,

F




, is independent of the formulation of the

Ja
obian. Its 
onvergen
e order is very 
lose

to unity and its magnitude is usually larger

than that of F

0

adv

. Therefore, most of the

dis
repan
y between the real and the model

vorti
ity budgets is 
on
entrated in the beta


ontribution at suÆ
iently high resolution.

Hen
e, in order to make a

urate vorti
ity

budgets, it follows that the beta 
ontribution

should be more a

urately 
omputed. One

possibility is to in
rease the order of the �-

nite di�eren
ing operator for the beta term,

��

y

 . Finally, the hypothesis that the J

3

-

QG model would give similar results 
om-

pared to the enstrophy 
onserving adve
tion

and the Æ-� tensor C-grid model was veri�ed.

From the general point of view of 
om-

puting vorti
ity budgets from �nite di�er-

en
e models, both QG and C-grid models

show the same relatively slow 
onvergen
e

order (about unity) of the dis
repan
y with

in
reasing resolution between the real and

the model vorti
ity budgets. For the range

of resolution 
onsidered, and depending on

the model type (SW or QG), numeri
al for-

mulations and the rotation angle (or more

generally, basin geometry), this error 
an be

estimated to vary between 5% to 50%.

As for the general a

ura
y of FD models

in presen
e of steps for wind-driven 
ir
ula-

tions under free-slip, the rotated square basin

experiments show that the B 
ombination for

the C-grid model and the J

3

or J

7

for QG

model give satisfa
tory results. We were not

able to get satisfa
tory results out of a 
on-

ventional B-grid model, though. This spatial

staggering of velo
ity and elevation does not

seem to suit very well the free-slip boundary


ondition, even in presen
e of straight walls.

The next 
hapter 
onsiders the more general


ase of a smoothly varying 
oastline for the

Munk problem.
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Figure 4.1: Lo
ations of variables near a step

for the SW C-grid model (left panel) and for the

quasi-geostrophi
 (QG) model (right panel). For

the SW model, dashed squares are the boundary

normal velo
ity nodes, white disks are the vorti
-

ity nodes where the relative vorti
ity is spe
i�ed

to be zero and bla
k disks are the vorti
ity nodes

for whi
h a dis
retized vorti
ity equation 
an be

written. In grey is the region delimiting the vor-

ti
ity budget domain. This region does not ex-

tend to the model boundary. Instead, there is an

half 
ell band around the boundary (left in white)

where we 
annot derive any budget. A similar

problem exists for the QG approximation.
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Figure 4.2: Lo
al adve
tive 
ux along the

boundary (C ��l=jj�ljj) at 20 km resolution in a

square basin for the enstrophy 
onserving formu-

lation of the adve
tion using the B 
ombination

of Table 4.1. The heavy-lined 
urve is for no ro-

tation of the basin, the light-lined 
urve is for

a small angle rotation of the basin (3:4

o

) with

respe
t to the grid. Due to the rotation angle,

4 steps o

ur along ea
h side of the square and


ause abrupt 
hanges in the lo
al adve
tive 
ux.
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v

Figure 4.3: Northward 
ow past a forward step.

The shaded area is the model domain. We 
on-

sider only the two momentum nodes for whi
h the

Æ-� formulation di�ers from the 
onventional for-

mulation. The �-point at the tip of the 
ontinent

has (i; j + 1) indi
es. Arrows indi
ate dire
tion

of the 
ow.
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Figure 4.4: Elevation �elds in meters after a 6 year spin-up for 20 km and 10 km resolution. Shown

are results from the A and B 
ombination (Table 4.1) with or without a 3:44

o

rotation angle of the

basin. Note that the B 
ase tends to resemble the A-B 
ase with no rotation, but not the A 
ase.
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ombinations. Results are shown for a 3:4
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Figure 4.6: Kineti
 energy after spin-up for

the B 
ombination in 10

10

m

5

/s

2

.

Figure 4.7: Ratio of F

adv

to F

i

for the B


ombination.
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with resolution
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Figure 4.12: Ratio of F




to the wind input. (a-

d) as des
ribed in Fig. 4.10.
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obian at �30
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is negative at this rotation angle, sim-

ilarly to results obtained for the B 
ombination.



Chapter 5

Single Gyre Cir
ulation in

Irregular Domains

In this 
hapter, we explore the issue of

the inertial runaway (to be de�ned below)

for the single gyre Munk problem with free-

slip boundary 
onditions from two perspe
-

tives: s
aling arguments and numeri
al sim-

ulations using the spe
tral element model.

In the previous 
hapters, we investigated the

a

ura
y of di�erent numeri
al methods and

found that the spe
tral element (SE) model

o�ers high a

ura
y in irregular domains and

nonlinear 
ows, whereas the other methods

present various limitations. This 
hapter is

both an appli
ation of the SE method and

a 
ontribution to the understanding of the

runaway problem.

5.1 Review of the Single

Gyre Problem with Free-

Slip Boundary Condi-

tions

As stressed by Pedlosky (1996), the single

gyre (as opposed to the double gyre) Munk


ir
ulation fa
es the unique 
hallenge that, in

terms of vorti
ity budget, all the wind input

has to be 
uxed out of the domain by means

of the vis
ous 
ux in order to yield a steady

or statisti
al mean solution. At equilibrium,

the vorti
ity budget be
omes:

I

�

h

� dl+ �

I

��

�n

dl = 0 . (5.1)

To be pre
ise, we refer to the single subtropi-


al (anti-
y
loni
) gyre problem in the north-

ern hemisphere for the single gyre problem.

In that parti
ular 
ase, the wind input to the

vorti
ity budget, the �rst term in (5.1), is

negative. Although the single gyre problem

is extreme in that the vorti
ity input is one-

signed, most people 
onsider the double gyre

problem (i.e., when the for
ing integrates to

zero) to be a spe
ial 
ase. There is typi
ally a

net vorti
ity input of one sign or another into

the o
ean, and therefore, in the generi
 
ase,

the system needs to dissipate some vorti
ity.

The single gyre problem is 
ertainly extreme,

but it is argued after that some of its 
hara
-

teristi
s make this problem even more inter-

esting and 
hallenging. Moreover, for the sin-

gle gyre for
ing, there is a strong 
orrespon-

den
e between the diÆ
ulty of balan
ing the

vorti
ity budget and the strength of the over-

all 
ir
ulation, sin
e the se
ond term in (5.1)

links the magnitude of the eddy-vis
osity, �,

to the importan
e of the normal derivative

of the vorti
ity. This derivative is related to

the strength of the 
ir
ulation. As � is re-

du
ed, the integral of the derivative must be

augmented in proportion to yield an equiva-

lent balan
e. The diÆ
ulty of balan
ing the

vorti
ity budget is also dependent on the dy-

nami
al boundary 
ondition. The vorti
ity

balan
e is more diÆ
ult to a
hieve when free-

slip boundary 
onditions are employed, as

opposed to no-slip. Using free-slip 
onditions

(see Chapter 1), the vorti
ity at the bound-

ary is zero along straight walls and, under

no-slip, it 
an rea
h large positive values,

whereas the vorti
ity is mainly negative in

the interior due to the negative wind input.

Therefore the normal derivative of the vor-

ti
ity, ��=�n, is mu
h higher in the no-slip


ase than in the free-slip 
ase, 
uxing more

easily the vorti
ity through the boundaries.
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This enables gyres under no-slip to a
hieve

weaker 
ir
ulations 
ompared to gyres under

free-slip.

The importan
e of the nonlinear terms

with respe
t to the vis
ous for
es is 
om-

monly s
aled by the Reynolds number, R

e

.

For Munk 
ir
ulations, it is more 
onvenient

to relate the Reynolds number to the dynam-

i
s of the boundary layer (see Pedlosky). R

e

is therefore de�ned as

R

e

=

�

Æ

I

Æ

M

�

3

(5.2)

where Æ

M

and Æ

I

are respe
tively the Munk

and inertial numbers. They are de�ned as

Æ

M

=

�

�

�L

3

�

1=3

; Æ

I

=

�

V

Sv

�L

2

�

1=2

, (5.3)

where V

Sv

is the Sverdrup velo
ity and L

is the width of the basin. In s
aling ar-

guments, V

Sv

is usually taken as the max-

imum value observed in the interior away

from the boundary layers. We prefer to use

the mean value of the V

Sv

whi
h 
an be ob-

tained by integrating the Sverdrup relation

over the whole domain ex
ept for the bound-

ary layers/footnoteThis 
hoi
e is motivated

by the quantitative estimations of 
oming

Se
tion 5.4 whi
h are based on vorti
ity bud-

gets arguments and are better approximated

by using the mean rather than the maximal

Sverdrup velo
ity. There is also a a poste-

riori and 
osmeti
 argument related to the

fa
t that the transition between the Sverdrup

interior solution to a Fofono�-type interior

solution (explained at the end of this para-

graph) o

urs at R

e

� 1 if a mean Sverdrup

velo
ity is 
hosen but will o

ur at Re � 4 if

the maximum Sverdrup velo
ity is 
hosen.:

V

Sv

=

1

�L

2

I

�

h

� dl . (5.4)

For the wind for
ing under 
onsideration,

� = 1:6 � 10

�11

m

�1

s

�1

and assuming that

h � H along the walls, the mean V

Sv

is ap-

proximately 1:25�10

�2

m/s. This 
hoi
e will

lead to smaller values of R

e

when 
ompared

to other authors' results. Another impor-

tant remark 
on
erns the physi
al meaning

of these two numbers. Æ

M

and Æ

I

, multiplied

by the width of the basin, L, yield respe
-

tively the thi
kness of the Munk and iner-

tial layers. These are the lengths at whi
h

the vorti
ity varies in order to yield a bal-

an
e between the vis
ous terms and the beta

term, and a balan
e between the adve
tion

and the beta term, respe
tively. The Munk

layer exists only for weak nonlinear terms.

When these nonlinear terms are large enough

(R

e

� 1 and beyond), the inertial boundary

layer prevails along the western boundary. In

su
h a 
ase, the Munk layer is repla
ed by a

vis
ous sublayer whose thi
kness is given by

LÆ

0

M

where

Æ

0

M

=

Æ

I

p

R

e

. (5.5)

Æ

0

M


omes from the evaluation of the bal-

an
e between the adve
tion and the vis
ous

terms. These nonlinearities, and the pres-

en
e of the inertial layer, introdu
e more dif-

�
ulties in a
hieving a vorti
ity balan
e. For

instan
e, in the absen
e of eddies, the inertial

layer inhibits the transport of vorti
ity from

the interior to the walls be
ause, there, the

streamlines and absolute vorti
ity 
ontours

are nearly parallel. Therefore, the negative

input of vorti
ity in the interior of the o
ean


annot be easily 
uxed out. This favors an

even more inertial and energeti
 interior 
ow

and, when the Reynolds number is beyond a


riti
al value, a Fofono�-type gyre develops

(as opposed to a Sverdrup interior) with un-

realisti
ly large speeds of the order of 50 m/s.

This is the so-
alled inertial runaway prob-

lem. A

ording to Pedlosky, this s
enario

also o

urs in the presen
e of no-slip bound-

ary 
onditions, the no-slip only retarding the

o

urren
e of the jump to the highly ener-

geti
 bran
h (where the Fofono�-type gyre

lies). Moreover, he states that the inertial

runaway is not just a feature of steady so-

lutions but is prone to appear in unsteady

solutions, as well.

Indeed, Ierley and Sheremet (1995) ob-

serve this runaway s
enario for the free-slip


ondition in steady and unsteady 
ir
ula-

tions in re
tangular domains for single gyre

for
ing. Under free-slip, there is no di�er-

en
e between unsteady and steady solutions

be
ause the eddy a
tivity is very weak in un-

steady solutions. However, no-slip steady

and unsteady solutions are usually di�er-

ent. Nonetheless, Sheremet et al. (1997)

demonstrate that the same runaway prob-

lem o

urs in re
tangular domains when the

no-slip 
ondition is applied to the western

and eastern walls (repeating the experimen-

tal setup of Bryan, 1963). They note that,
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after the unsteady and steady solutions �rst

depart, the strength of the 
ir
ulation does

not in
rease with in
reasing Reynolds num-

ber be
ause the eddies eÆ
iently remove the

ex
ess of vorti
ity produ
ed in the bound-

ary layer. However, past a 
riti
al Reynolds

number, they note that the mean 
ir
ula-

tion strengthens again, the eddies being no

longer eÆ
ient in removing the ex
ess of vor-

ti
ity. Veronis (1966) for the single gyre and

Primeau (1998) for the double gyre demon-

strate that the runaway s
enario is also ob-

served for bottom fri
tion only models. Ped-

losky (1996, p87) and Ierley and Sheremet

are 
onvin
ed that their runaway s
enario

is universal, based on their experien
e with

strati�ed quasi-geostrophi
 (QG) unsteady

simulations in idealized geometries. A

ord-

ing to them, no 
onvergen
e of the statisti
al

steady state 
an be a
hieved with in
reas-

ing Reynolds number, whatever the type of

boundary 
onditions. Of 
ourse, the latter

argument 
on
i
ts with our day-to-day expe-

rien
e. As far as we know, the Gulf Stream


ir
ulation has not blown up! Nonetheless,

these authors bring strong numeri
al evi-

den
es in favor of their arguments. There-

fore, where is the 
aw ?

From the perspe
tive of time-dependent

simulations, one aspe
t of the results of

Sheremet et al. (1997) remains question-

able. This is related to the use of no-slip

boundary 
onditions in unsteady solutions.

The fa
t that no-slip 
ir
ulations are prone

to barotropi
 instabilities 
annot be under-

estimated from the point of view of the iner-

tial runaway. These instabilities may be suf-

�
ient to produ
e eddies whi
h would trans-

port the vorti
ity through the inertial layer

to the vis
ous sub-layer, where it 
an be


uxed a
ross the wall. However, no-slip 
ir-


ulations are very demanding in terms of


omputer resour
es and, therefore, the issue

is still unresolved. One possibility is that we

still need more resolution (to a
hieve larger

R

e

) in unsteady no-slip 
ir
ulations. A se
-

ond possibility is related to the use of overly

idealized geometries in the aforementioned

results. Finally, a third possibility is that

the models used in those results are too sim-

ple. From this last point of view, we may

la
k 
ertain physi
al pro
esses whi
h are im-

portant for the downward 
as
ade of energy.

In favor of this argument, S
ott and Straub

(1998) noted that, under no-slip, the Rossby

number (whi
h s
ales the nonlinear terms to

the Coriolis for
es) in
reases qui
kly with in-


reasing Reynolds number. Sin
e the QG

approximation applies only for small Rossby

number, R

o

, large R

o

means that the rather

inexpensive QG models 
annot be used for

even su
h idealized experiments, but have to

be repla
ed by, at a minimum, more 
ostly

shallow water models.

1
n

s

s

0s

e s

ne

s

0n
1n

2n

2

Figure 5.1: Notation 
orresponding to the


urvilinear 
oordinates.

In favor of these three arguments, re
ent

high resolution (1/4 to 1/64 degree) simula-

tions of the Atlanti
 were 
ondu
ted using

the MICOM model (i.e., an isopy
nal prim-

itive equation model) and showed that the

mean 
ir
ulation 
onverges to a more and

more realisti
 state with in
reasing Reynolds

number (Hulburt and Hogan, 2000). The

eddy-vis
osity was lowered from 100 to 3

m

2

/s. The problem with this kind of experi-

ment is that it is diÆ
ult to distinguish whi
h

physi
al pro
esses or te
hni
al details are

ne
essary to obtain the 
onvergen
e with in-


reasing Reynolds number. We believe that

one important distin
tion 
omes from the

geometry. Theoreti
ians typi
ally fo
us on

re
tangular domains whereas primitive equa-

tions models are generally run in more real-

isti
 geometries. Irregular geometries may

be suÆ
ient by themselves to provide the

ne
essary sour
e of eddies in order to get

weaker and more realisti
 
ir
ulations at high
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Reynolds number. An irregular geometry|

espe
ially irregular along the western 
oast-

line where the 
urrents are the strongest|

may also provide stronger intera
tions be-

tween geostrophi
 and ageostrophi
 modes,

and hen
e may fa
ilitate a forward energy


as
ade. The latter pro
ess is absent from

idealized early experiments whi
h are based

on the QG equation. Thus, the shallow wa-

ter equations are a good starting point for

our investigation. Furthermore, we believe

that having irregular boundaries is more im-

portant than the 
hoi
e on the type of dy-

nami
al boundary 
onditions. In the 
ontext

of the double gyre for
ing of the Munk prob-

lem, S
ott and Straub (1998) show that the

in
rease in kineti
 energy of non-symmetri
al

steady solutions and time-dependent mean

solutions tends to level o� as the Reynolds

number in
reases for the two boundary 
on-

ditions. Therefore, the idealized double gyre

experiment where the wind input to the vor-

ti
ity budget 
an
els may exhibit less se-

vere inertial runaway. Contradi
tory evi-

den
e against inertial runaway has yet to

be found in single gyre 
ir
ulations where

the wind input of vorti
ity is single signed.

Therefore, we will 
ondu
t experiments using

the free-slip boundary 
ondition sin
e many

eviden
es exist for a robust inertial runaway

under free-slip in re
tangular basins. In fa
t,

under the free-slip boundary 
ondition, irreg-

ular boundaries are the only way to produ
e

positive vorti
ity whi
h is essential to the

produ
tion of eddies. The vorti
ity 
an be

expressed using 
urvilinear 
oordinates fol-

lowing the wall as

� =

�v

s

�n

�

�v

n

�s

+

v

s

R

s

�

v

n

R

n

, (5.6)

where (s; n) are respe
tively the 
oordinate

along and normal to the wall, v

s

and v

n

are

the velo
ity 
omponents respe
tively along

s and n and R

s

and R

n

are the respe
tive

radii of 
urvature of the axes along the wall

and normal to the wall. (notation is shown

in Figure 5.1). Right at the wall and under

the free-slip boundary 
ondition (as de�ned

in Chapter 1), the equation redu
es to

� =

v

s

R

s

. (5.7)

If the velo
ity at the wall is 
lose to 1 m/s

and the radius of 
urvature along the wall is

of the order of the 10 km, � is of the order

of 10

�4

s

�1

, that is, of the order of f

0

1

.

One way to evaluate the Rossby number is to

measure the ratio of �=f

0

. Therefore, if the

radius of 
urvature is of the order of 10 km,

we 
an obtain Rossby numbers of the order

of unity; that is, well beyond the range for

whi
h the QG approximation applies. This

stresses again the need to use the primitive

equations. 10 km is also somewhat below the

radius of deformation for the �rst baro
lini


mode given the value of the parameters we

use (L

R

� 31 km). This means for instan
e

that Kelvin waves may en
ounter diÆ
ulties

in going around su
h geometri
al features.

5.2 Model Sele
tion and Ex-

perimental Design

In order to test these arguments, we 
on-

sider the following experiment. The set-up


onsists of wind-driven 
ir
ulations in �ve

di�erent geometries (Figure 5.2). The �rst

is a 
ir
ular geometry with the radius given

by L




= 500 km. The se
ond is a pertur-

bation of the �rst geometry by the addition

of a wavy pattern along the 
oastline in the

form of a sine wave. We 
hoose the wave

length to be a 1/16 of the perimeter. The

amplitude of the sine wave from a 
rest to a

trough is 12.5 km. The third geometry is the

same one ex
ept that the amplitude of the

sine perturbation is 25 km. The amplitude

for the fourth and the �fth is respe
tively

50 and 100 km. The radius of 
urvature was


omputed using the simple relation:

�e

s

�s

= �

1

R

s

e

n

(5.8)

where e

s

and e

n

are the orthonormal unit

ve
tors asso
iated with the dire
tions s and

n. For a sine wave given by y = h

0

sin(kx)

the minimum radius of 
urvature is given by

1

R

s

= h

0

k

2

(5.9)

1

Using Pedlosky's de�nition for free-slip instead

of the 
urrent one, as de�ned in Chapter 1, the rela-

tive vorti
ity 
an rea
h larger values. If a 
uid par-


el passes east of a obsta
le and 
ows anti
lo
kwise

around it in a steady state, we have �u=�y < 0.

Using the mass 
onservation equation, this leads to

�v=�x > 0. Therefore, a

ording to (5.6), � > V=R

s

,

i.e., the vorti
ity is larger.
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I
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Figure 5.2: The �ve geometries used for our

appli
ation of the SE method. The 
ir
le is

deformed by super-imposition of a 
oastal os-


illation of the form of a sine wave. For Ge-

ometry V, we label the bumps for later refer-

en
e starting from the �rst bump west of the

north-south axis passing through the 
enter

of the basin and we then pro
eed anti
lo
k-

wise. The same labeling applies for the other

geometries.

In the 
ontext of the 
ir
ular geometry, we


an 
orre
t the radius by using the relation:

1

R

s

= h

0

k

2

+

1

L




(5.10)

Hen
e, the minimum radius of 
urvature for

the se
ond geometry is about 160 km and

80 km, 40 km and 20 km for the third,

fourth and �fth geometries. We use three

values of the eddy-vis
osity (� = 700, 300,

100 m

2

s

�2

). The wind-for
ing is the same

as applied in the previous 
hapter for single

gyre Munk problem. The Reynolds bound-

ary number ranges therefore from 0.5 to 3.5.

For 
omparison, S
ott and Straub (1998)

rea
hed impressive values of about 35 for

double gyre steady 
ir
ulations with a QG

model. In 
ontrast, our maximum a
hieved

value of R

e

= 3:5 is lower. However, in the


ontext of unsteady solutions in irregular ge-

ometries using a shallow water redu
ed grav-

ity model and due to our de�nition of V

Sv

,

this 
an be 
onsidered a high value. The in-

ertial layer width is about 28 km whereas the

vis
ous sublayer width varies from 40 km to

15 km. Therefore, we expe
t that the pro-


esses are mostly nonlinear. Sin
e we are

interested in the mean states of the 
ir
u-

lation, when possible, we performed six year

averages of the �elds after a statisti
al steady

state has been rea
hed. This period is lim-

ited by 
omputer resour
es. It is a bit short

sin
e six years represent only twi
e the time

for a Rossby wave to 
ross the basin. How-

ever, we do not believe that these results

would signi�
antly di�er for longer averag-

ing period.

We �rst 
ompare the results from the C-

grid FD model using the promising Æ-� stress

tensor formulation and the enstrophy 
on-

serving s
heme (the B 
ombination of Se
-

tion 4.2.2) with those of the C-grid using

the same adve
tive s
heme and the 
onven-

tional stress tensor formulation (the A 
om-

bination of Se
tion 4.2.2). Figure 5.3 shows

the elevation �elds after a 3 year spin-up for

� = 100 m

2

s

�1

. The 
ir
ulation of the B


ombination is mu
h more inertial than the


ir
ulation of the A 
ombination. Further-

more (but not shown), the vorti
ity �elds are

very noisy in both 
ases. The B 
ombination

run is stopped shortly after the third year

of simulation be
ause of the depletion of the

water 
olumn along the boundaries (h < 0).

Figure 5.4 shows the total energy for both



CHAPTER 5. SINGLE GYRE CIRCULATION IN IRREGULAR DOMAINS 69


ombinations and the SE model. We 
on-

sider the SE results to be the \truth". We

note that the A 
ombination is too dissipa-

tive and that the B 
ombination is not dis-

sipative enough. The A 
ombination is for

this geometry the 
ombination 
losest to the

SE results. That the B 
ombination is not

dissipative enough 
an be related to the fa
t

that this parti
ular 
on�guration of the C-

grid model spe
i�es the vorti
ity to be zero

at the wall and therefore, does not take into

a

ount the in
uen
e of the radius of 
urva-

ture. Therefore, although the B 
ombination

was su

essful in the presen
e of steps in a

re
tangular geometry (where free-slip implies

� = 0), this 
ombination is no longer su

ess-

ful in the general 
ase of an irregular geom-

etry where the vorti
ity 
an be non-zero at

the walls.

A better way to implement the boundary


ondition in the FD model might be to take

into a

ount the 
urvature of the boundary,

as we do in the SE model. This would re-

quire 
omputing for ea
h velo
ity node 
lose

to the boundary a series of 
oeÆ
ients asso-


iated to nearby velo
ity points in order to

extrapolate the normal derivative of the tan-

gential velo
ity along the wall (i.e., a general-

ization of the o�-
entered two point operator

used in Se
tion 2.2.2 for enfor
ing free-slip

along straight walls.) The C-grid however

does not easily allow for su
h an implementa-

tion. One limitation 
omes from the fa
t that

the velo
ity 
omponents are not dis
retized

at the same lo
ation. This implies interpola-

tions ba
k and forth from the global 
oordi-

nates to the lo
al 
urvilinear 
oordinates of

the 
omponents of velo
ity. This sort of two-

way interpolation is damaging to the overall

a

ura
y. Leakage of mass from the 
om-

putational domain is also a possibility that


ould a�e
t the a

ura
y.

We therefore need a model whi
h repre-

sents more a

urately the e�e
ts of the walls.

The SE model seems to be a good 
andidate.

A se
ond order FE model, whi
h satis�es the

LBB stability 
ondition and whi
h is based

on the Eulerian time des
ription, may be su
-


essful in this appli
ation as well. However,

from Chapter 3, the SE model would o�er a

robust and faster 
onvergen
e with in
reas-

ing resolution at a more reasonable 
ost.
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Figure 5.3: Elevation �elds in the Geometry

V for the C-grid model after 3 years of spin-

up. On top, the A Combination, at bottom,

the B 
ombination.
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Figure 5.5: Mean elevation �elds for the �ve geometries using the SE model. When no

steady state 
ould be rea
hed be
ause the solution jumps to the high energeti
 bran
h, an

'X' is drawn instead.
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5.3 Results

5.3.1 General Results for all Ge-

ometries

In Figure 5.5, we show the di�erent statisti-


al mean 
ir
ulations obtained in the �ve at-

tempted geometries. An \X" marks when a

statisti
al mean 
ould not be rea
hed. Su
h

is the 
ase when the solution jumps to the

high energy bran
h. When this o

urs, the

sea level tilt implied through geostrophi
 bal-

an
e by the unreasonably strong 
urrents

qui
kly leads to zero layer thi
kness, at whi
h

point the integration is halted. This happens

for the intermediate and high R

e

in the Ge-

ometry I and II and for high R

e

in Geome-

tries III and IV. We a
hieve a reasonable sta-

tisti
al mean for all 
onsidered R

e

in Geome-

try V. As the Reynolds number is in
reased,

the re
ir
ulation tends to move eastward and

northward and strengthens. In Geometry V,

the re
ir
ulation is nearly round, whereas, it

is more elongated for the other geometries.

The other interesting point to note in Ge-

ometry V is related to the position of the

re
ir
ulation relative to the bumps. Between

R

e

= 0:5 and R

e

= 1:2, the re
ir
ulation

strengthens, but is somewhat trapped be-

tween Bumps 2-3. However, at R

e

= 3:5, it

jumps to the next indentation (Bumps 1-2;

see labeling in Figure 5.2). The general re-

sult is therefore that the presen
e of bumps

along the 
oastline inhibits and retards the

jump to the high energy bran
h for the Munk

problem with free-slip boundary 
ondition.

However, the radius of 
urvature of the 
oast-

line has to be fairly small (i.e., smaller than

the radius of deformation) in order to a
hieve

reasonable 
ir
ulations under high Reynolds

numbers.

What is of interest is the vorti
ity stru
-

ture for all these geometries. Figure 5.6

shows the relative vorti
ity �eld for Geom-

etry IV and V and for di�erent Reynolds

numbers. One general 
hara
teristi
 is that

these �elds are less smooth than those for

the stream fun
tion or the elevation �eld.

This relates to the fa
t that the vorti
ity


orresponds to the se
ond order derivatives

of the stream fun
tion. The vorti
ity �eld

is therefore noisier and more diÆ
ult to re-

solve. Nonetheless, the results from the SE

model are very en
ouraging when 
ompared

to those obtained from �nite element mod-

els for whi
h the vorti
ity �elds are gener-

ally mu
h noisier. One basi
 feature is that

the vorti
ity approximates the form of a pos-

itive Dira
 delta fun
tion 
lose to the tip of

the bumps. Therefore, dynami
al pro
esses


lose to the tip are rather 
omplex, irregular

and diÆ
ult to resolve using a high order for-

mulation. However, the use of a dis
ontinu-

ous SE formulation seems to be of some help

in resolving these irregularities by not prop-

agating them to neighboring elements. The

largest peaks are observed where the velo
ity

is the largest. The magnitude of these peaks

ranges between 10

�5

and 10

�4

s

�1

. Where

the magnitude of these peaks goes beyond

10

�5

, a tail of positive vorti
ity forms down-

stream of the peaks. Hen
e, the ex
ess of

positive vorti
ity is adve
tively transported

downstream. Of 
ourse, these peaks in
rease

the lo
al gradient of vorti
ity pointing out-

ward. They are therefore dire
tly related

to the me
hanism whi
h balan
es the vor-

ti
ity budget and limits the size of the re
ir-


ulation. Furthermore, we note that a pos-

itive vorti
ity wall surrounds the re
ir
ula-

tion zone. This wall is 
onsistent with the

presen
e of a region of low velo
ity outside

the re
ir
ulation zone (i.e., a region of strong

shear). We note also that, for Geometry V

and R

e

= 3:5, a thin �lament of large neg-

ative vorti
ity is lo
ated near the western

boundary. An important remark 
on
erns

the Rossby number, R

o

in the presen
e of

bumps. By measuring the ratio �=f

0

, we note

that R

o

is above 0.1 for Geometry III and

rea
hes about unity for Geometry V. As pre-

di
ted, R

o


an be fairly large in the presen
e

of bumps whi
h invalidates the QG approxi-

mation.

We also show the power input (the rate of

energy put in by the wind), P , in Figure 5.7.

P des
ribes how the 
ir
ulation adjusts to

the wind pattern in order to minimize its en-

ergy. In general, it shows that the in
rease in

P is mu
h less than that in R

e

. This means

that the 
ir
ulation adjusts in su
h a way

that redu
ing � by a fa
tor of two does not

lead to a doubling of P . It would be interest-

ing to verify if some simple s
aling arguments

reprodu
e this result. However, it is diÆ
ult

to derive a s
aling for P sin
e it 
annot be

estimated on boundary layer 
onsiderations

alone but requires also the knowledge of the

interior 
ir
ulation. The �gure shows that
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Figure 5.6: Mean vorti
ity �eld for the Geometries IV and V using the SE model. When

no steady state 
ould be rea
hed be
ause the solution jumps to the high energeti
 bran
h,

an 'X' is draw instead. The in
uen
e of the bumps is 
learly seen by the abrupt jump in

the vorti
ity �eld.
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the rate of in
rease is larger for the regu-

lar geometry than for the irregular geome-

tries. In fa
t, the rate of in
rease is rather

similar for the two irregular geometries, al-

though there is a general shift toward lower

values of P as the bumps grow in size. In 
on-

trast with results in double gyre experiments

(S
ott and Straub, 1998) where P tends to

de
rease with in
reasing R

e

, the single gyre


ir
ulations tend to have diÆ
ulties in mini-

mizing P . This stems for the single-gyre 
ir-


ulation being to stable. Under the double-

gyre wind for
ing, the re
ir
ulation is usually

highly unstable and 
ounter-gyres develop

above a 
ertain R

e

(the four gyres stru
ture

observed by Greatbat
h and Nadiga, 2000;

also visible in S
ott and Straub, 1998).
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w
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p

u
t 
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5 /s
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Figure 5.7: Power input by the wind using

the mean �elds with respe
t to the boundary

Reynolds number.

5.3.2 Role of the Transients for Ge-

ometry V at High Reynolds

Number

We now fo
us on the results of the high

Reynolds number, R

e

= 3:5, and Geometry

V. In parti
ular, we are interested in the role

of the transients in a
hieving a steady state.

One way to investigate the role of the tran-

sients is to plot maps of the standard devia-

tion for the elevation. Figure 5.8 reveals that

a belt of strong anomalies exist south of the

re
ir
ulation. This belt extends northward

to Bump 16 and 15, and westward 
lose to

Bump 5 where it rea
hes a maximum. The

western part of the re
ir
ulation is also a lo-


al maximum of the deviation. It is along

this belt that we observe strong eddies going

around the re
ir
ulation and moving west-

ward. We 
an further re�ne this kind of anal-

ysis by generating the same kind of maps but

for sele
ted frequen
ies.

Figure 5.9 reveals the a
tivity of the ed-

dies of period over 200 days. This �gure is

very similar to Figure 5.8. It reveals that the

main 
ontribution to the standard deviation


omes from the slow modes. The maximum

is lo
ated in the eddy-belt as previously in-

trodu
ed, south-east of the re
ir
ulation with

another but slightly weaker maximum 
lose

to the western boundaries. That the eddies

tends to intensify in proximity of the re
ir-


ulation and not at the boundary probably

means that they strongly intera
t with the

re
ir
ulation.

Figure 5.10 shows standard deviations for

periods between 17 days and 200 days. By

isolating these periods, we hope to emphasize

the in
uen
e of small eddies. A strong sig-

nal is visible south-west of the re
ir
ulation

near Bump 5. It may be due to larger eddies

and Rossby waves intera
ting with the west-

ern boundary and boun
ing ba
k at shorter

wavelengths. The other noti
eable point is

that the western part of the re
ir
ulation

is mainly a
tive in this band of frequen
ies.

Consistent with these �ndings, we noted that

weak eddies of s
ale above the radius of de-

formation are produ
ed on the southern 
ank

of eastern bumps. The traje
tory of these

eddies instead of being simply westward is

a
tually more to the south-west in the ab-

sen
e of strong 
urrents. The eddies seem to

originate from large shift of the elevation in

intera
tion with the bumps. The strongest

eddies originate from this me
hanism but at

higher latitudes. There, they intera
t with

the re
ir
ulation and intensify.

Finally, Figure 5.11 shows the standard de-

viation for periods between 0.6 and 17 days.

This �gure mainly shows the inertial grav-

ity and Kelvin waves. The maximum stan-

dard deviation for this �gure is ten times

smaller than the mean standard deviation

of Fig. 5.8. Of interest is to note the spa-

tial patterns of the Kelvin waves along the

boundaries. The a
ross-stream length s
ale

tends to de
rease near the bump tips, and
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Figure 5.8: Mean standard deviation of the

elevation.
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Figure 5.9: Mean standard deviation of the

elevation for frequen
ies with period above

200 days.
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Figure 5.10: Mean standard deviation of the

elevation for frequen
ies with period between

17 and 200 days.
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Figure 5.11: Mean standard deviation of the

elevation for frequen
ies with period between

.6 and 17 days.
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de
rease between bumps. This is eviden
e

that the Kelvin waves are distorted by the

presen
e of the bumps. The \pa
king" it-

self varies along the boundaries of the basin.

The pa
king is loose in the eastern part of

the basin and very severe in the western part,

espe
ially at Bump 1 and 2. The pa
king is

then less and less severe as the Kelvin waves

move anti-
lo
kwise away from the re
ir
ula-

tion. These variations in the pa
king of the

Kelvin waves is related to the strength of the

boundary 
urrents. These 
urrents are very

strong near the re
ir
ulation, weaker away

and absent in the eastern part of the basin.

Figure 5.11 shows also two other interesting

regions. One is the edge of the re
ir
ulation

in the interior of the basin, where the iner-

tial 
urrents separate from the boundaries.

There, the standard deviation peaks 
lose to

Bump 1 and sheds a tail along the edge of the

re
ir
ulation. Presumably, be
ause of the

strong inertial 
urrents, the Rossby number

is large in this region and the inertial 
ur-

rents are slightly geostrophi
ally unbalan
ed

and produ
e inertial-gravity waves. A se
ond

region of interest is between Bump 1 and 2.

There, the pattern due to the Kelvin waves is

distorted be
ause of the separation from the

west 
ank of Bump 1. A reasonable explana-

tion is that the Kelvin waves are disrupted

by the en
ounter with the strong inertial 
ur-

rents of the re
ir
ulation and generate other

gravity waves at Bump 1.

Transients may be essential in assuring

lower energy levels by transferring the energy

down-s
ale. This down-s
ale transfer 
an

happen in two ways: either the eddies trans-

fer the energy to inertial-gravity waves by in-

tera
tions along the western walls, or in the

re
ir
ulation zone through geostrophi
 im-

balan
es. These small-s
ale inertial-gravity

waves then dissipate the energy if their s
ale

is 
lose to the dissipative range. The re
ir-


ulation lo
ation appears to be the most im-

portant from a plot of the divergen
e �eld

(not shown). An intense dipole is present

right at Bump 2, in front of the re
ir
ulation

zone. The divergen
e may be related to a

strong for
ing of the Kelvin waves observed

in Figure 5.11. The Kelvin waves are 
har-

a
terized by a mode two wave (two 
rests,

two troughs around the basin) with period

8.3 days (Fig 5.12). The fa
t that these

Kelvin waves 
orrespond to a free mode of os-


illation and are very regular both spatially

and temporally suggests a resonant intera
-

tion

2

. Some irregularities are visible, though.

These arise from intera
tions with the tip of

the bumps along the western boundary. In

order to emphasize the nonlinear energeti


transfer to the Kelvin waves and possible vis-


ous dissipative e�e
ts, we analyze the am-

plitude of the Kelvin waves as they propagate

along the boundaries.

Sin
e the amplitude of the Kelvin waves is

dependent on the Coriolis parameter, f , we

need to �rst separate the Coriolis e�e
t from

produ
tion or dissipative e�e
ts in order to

make a 
lear diagnosti
 on these waves. To

this aim, we 
an use the following rule (see

also Gill, 1982, p. 379-380): For a Kelvin

wave propagating along a southern bound-

ary, we have

8

>

<

>

:

� = h

0

e

�y=L

Ro

F (x� 
t)

u =

gh

0




e

�y=L

Ro

F (x� 
t)

v = 0 ,

(5.11)

where the southern boundary is lo
ated at

y = 0 km, 
 =

p

gh and L

Ro

is the radius

of deformation given by L

Ro

= 
=f . The

linearized total energy of this Kelvin wave

is, after simpli�
ation:

te(x; y; t) = gh

2

=2 +Hu

2

=2 =

gh

2

0

F

2

(x� 
t)e

�2y=L

Ro

(5.12)

After integration over spa
e, the energy be-


omes

TE =

Z Z

te(x; y; t) dxdy =

gh

2

0

L

Ro

2

Z

F

2

(x� 
t)dx

(5.13)

Now, we assume that the same Kelvin wave

moves along a meridional wall 
onserving

TE, with no 
hange in stru
ture (

R

F

2

dx is

now a 
onstant independent of the orienta-

tion of the wall) but a 
hange in amplitude

and in the radius of deformation, L

Ro

. As

2

The regular temporal and spatial stru
ture of the

Kelvin waves still eludes us. It is possible that non-

linear intera
tions o

ur in a band of frequen
ies that


overs the frequen
y of these free-mode Kelvin waves.

At this frequen
y, the waves may be so resonant that

they 
an pi
k up a very faint signal.



CHAPTER 5. SINGLE GYRE CIRCULATION IN IRREGULAR DOMAINS 77

L

Ro


hanges with latitude, h

0


hanges in-

versely as the square root of L

Ro

for the to-

tal energy to be 
onserved. And as L

Ro

is

inversely proportional to f , h

0

is therefore

proportional to the square root of f . Thus,

we 
an 
orre
t the amplitude of the Kelvin

waves for the beta e�e
t by using the rela-

tion:

h

0

0

=

h

0

p

f

0

+ �y

. (5.14)

The elevations along the boundaries were

�rst 
orre
ted with respe
t to 
hange in the

envelope (passage of an eddy or global shift

of the 
ir
ulation strength) using a 17 day

smoother. From this time series, h

0

was 
om-

puted using the di�eren
e of maximum and

the minimum elevation observed at one lo
a-

tion during a 17 day time window.

Figure 5.13 shows both h

0

and h

0

0

along

the boundaries as the averaged value over the

last 6 years of simulation. Along the western

boundary, as the Kelvin waves pass the tip

of the bumps, they en
ounter 
ounter 
ur-

rents. The strength of these 
urrents is not

strong enough to stop the Kelvin waves, but

does slow them and indu
es the peaks of Fig-

ure 5.13 and the pa
king in Figure 5.11. It

is also apparent that there is a 
ontinuous

de
line in the amplitude of the Kelvin waves

as they leave the western region of produ
-

tion and move anti-
lo
kwise. This de
line

is probably due to vis
ous e�e
ts whi
h are

large for the s
ale of the width of the Kelvin

wave. There is apparent but weak modi�
a-

tion of the waves as they passed the tip of the

eastern bumps where we measured radius of


urvature of 18 km whi
h are 
onsistent with

Figure 5.11. Therefore, the Kelvin waves

tend to follow the 
oastline even when the

radius of 
urvature is below the radius of de-

formation. The Kelvin waves 
annot re
e
t

on the eastern wall as Rossby waves be
ause

their frequen
y is too high for Rossby waves

to exist. There is, however, the possibility

that Kelvin waves generate inertial-gravity

waves along the eastern boundary, as they go

around the bumps and di�ra
t some energy.

For the eddy vis
osity used and taking a ve-

lo
ity of 3 
m/s along the eastern boundaries,

features below 3 km lie in the dissipative

range. Therefore, these Kelvin waves must

be largely dissipative themselves, dire
tly or

by further 
as
ade to inertial gravity waves.

Thus, the Kelvin waves provide one me
ha-

nism for the dissipation of the energy at this

parti
ular Reynolds number (not ne
essarily

true at higher R

e

).

Of interest is to note that the amplitude of

the Kelvin waves is not 
onstant during the

simulation (Fig. 5.14). In fa
t, we note that

the amplitude is anti-
orrelated to the total

energy (Fig. 5.15), the amplitude being high-

est when the total energy is the lowest. One

explanation may be that, as the amplitude

of the Kelvin modes grows, more energy 
an

be dissipated via these waves. If the ampli-

tude of the Kelvin waves grows, the reason

lies in stronger intera
tions with the re
ir
u-

lation. These intera
tions may be related to

the strong instabilities of the re
ir
ulation.

It is diÆ
ult to explain why there should

be a 180

o

phase lag between the energy in

the Kelvin waves and the total energy, whi
h

represents mostly the geostrophi
 modes. A

180

o

phase lag would appear if all the en-

ergy lost in the geostrophi
 modes went into

the Kelvin waves with very weak dissipation.

However, Figure 5.13 implies nearly a 70%

drop in amplitude for a Kelvin wave going

along the perimeter of the basin (in 20 days).

This suggests a very strong dissipation, in-


onsistent with the long period variations of

Figures 5.14 and 5.15 (about 500 to 1000

days).

The maps of the standard deviation of the

elevation �eld reveals that the re
ir
ulation

zone is very a
tive. Transient geostrophi
 ed-

dies tend to amplify in the proximity of the

re
ir
ulation. Energy leaks from the re
ir-


ulation to these eddies and to the Kelvin

waves. In order to emphasize the instabili-

ties in the 
ir
ulation zone, Figure 5.16 shows

a sequen
e of snapshots taken of the relative

vorti
ity every 20 days between day 5705 and

day 5985. This parti
ular sequen
e was 
ho-

sen be
ause it shows rapid 
hange of the re-


ir
ulation zone itself. For instan
e, on days

5705, 5785 and 5885, the re
ir
ulation mini-

mum has shifted to the west and is weaker,

whereas the re
ir
ulation is the strongest for

days 5745, 5825 and 5925 after the mini-

mum has shifted ba
k to the east, 
lose to

the position of the edge of strong positive

vorti
ity. Consistent with the eastward shift

and the intensi�
ation of the re
ir
ulation,

a tail of positive vorti
ity is shed along its

edge. Rapid 
hanges in the re
ir
ulation pat-

terns mean that parti
les are not trapped in-

de�nitely inside but es
ape regularly. This

me
hanism may prevent the formation of a
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Figure 5.16: Instantaneous vorti
ity �eld in the vi
inity of the re
ir
ulation. We fo
us of the

period between 5705 and and 5925 days in a region limited in the south by y = �250 km,

in the west by x = �200 km and in the east by x = 200 km. Bumps 1 and 16 are visible

along the northern boundary.
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Figure 5.12: Hovm�oller diagram of the �l-

tered elevation with respe
t to time and lo-


ation along the boundary. The elevation is

given in meters. Note the strong regularity

of the Kelvin waves. They are 
hara
terized

by a mode 2 wave with period 8.3 days.

Fofono� gyre.

From a vorti
ity balan
e point of view, the

transients transport the ex
ess of vorti
ity

produ
ed in the interior to the walls. How-

ever, to be e�e
tive, su
h a transport needs

to a
t a
ross the streamlines. In a steady

state, the vorti
ity balan
e a
ross a stream-

line is

I

�

h

�dl+�

I

��

�n

dl =

I

(�+f)u�ndl+

I

�

0

u

0

�n dl .

(5.15)

The transport of the mean vorti
ity by the

mean 
urrents does not 
ontribute to this

balan
e(u � n = 0), therefore (5.15) simpli-

�es to

I

�

h

� dl+ �

I

��

�n

dl = +

I

�

0

u

0

� n dl ,

(5.16)

where vorti
ity transport by eddies and vis-


ous 
ux balan
e the wind input.

In order to illustrate the eddy transport,

Figure 5.17 shows three sub-�gures. The

Figure 5.13: Amplitude of the Kelvin wave

in meters along the boundary averaged over

6 years. The solid line represents the original

amplitude, h

0

, and the dashed line represents

the 
orre
ted amplitude, h

0

0

, with respe
t to

the Coriolis parameter.
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Figure 5.14: Time series of the amplitude

of the os
illations at (x=500 km, y=0 km).

The time series is for instan
e plotted in Fig-

ure 5.12 all along the boundary. From this

series at the spe
i�ed lo
ation, the maximum

and minimum were taken in a 52-point run-

ning window (approximated 17 days). The

di�eren
e of these two quantities divided by

two yields the amplitude at a parti
ular time.
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Figure 5.15: Total energy for the last 6 years

of simulation. Note that the amplitude of

the Kelvin wave of Figure 5.14 tend to be

anti-
orrelated with the total energy.

�rst is the 
url of the wind input over the

domain (k � r �

�

h

), the se
ond is the di-

vergen
e of the eddy transport of vorti
ity

(r ��

0

u

0

) and the third is a ve
tor-plot of the

eddy transport normal to the mean stream-

lines as to emphasize the a
ross-streamline


omponent. The �rst two �gures emphasize

the lo
al sour
es and sinks to the vorti
ity

budget. The darker regions in the �rst sub-

�gure are stronger sinks of vorti
ity and the

dark (light) regions in the se
ond sub-�gures

are sour
es (sinks) of vorti
ity. In the �rst

sub-�gure, it is apparent that most of the

domain is a sink of vorti
ity, 
onsistent with

the idea of a single-gyre for
ing. However,

due to the strong gradient present in the el-

evation �eld, the southern part of the re
ir-


ulation is a very weak sour
e of vorti
ity

whereas the northern part and more spe
i�-


ally the regions surrounding Bump 1 and 2

are strong sinks of vorti
ity. The divergen
e

of the eddy transport of vorti
ity (the se
ond

sub-�gure) shows mu
h �ner s
ales and more

noise. The basi
 features of this sub-�gure

are the presen
e of two ar
s along the east-

ern and southern edges of the re
ir
ulations

of opposite signs. The interior ar
 is a region

of 
onvergen
e of the eddy transport (sour
e

of vorti
ity) whereas the exterior ar
 is a re-

gion of divergen
e (sink). Regions 
lose to

Bump 3, 4 and 5 are mostly sour
es of vorti
-

ity whereas the regions between bumps tend

to be weak sinks.

The maximum magnitude of the eddy

transport is 
omparable to the value of the

wind input. Three a
tive regions are evident

on the third sub-�gure. The �rst is the re-


ir
ulation zone, the se
ond is dire
tly south-

west of this and the last region is southeast of

the re
ir
ulation. The transport in the re
ir-


ulation zone is outward-oriented along the

western edge and inward along the southern

and parts of the eastern edges. On this sub-

�gure, the two ar
s of 
onvergen
e (sour
e of

vorti
ity) and divergen
e (sink) are re
ogniz-

able. The net for
ing over the re
ir
ulation

region appears to be weakly positive. This

strong a
tivity along the edge of the re
ir
u-

lation is another eviden
e that the transients

are important in preventing the re
ir
ulation

from growing and �lling the entire domain,

as it does when the solution jumps to the

high energeti
 bran
h.

Southwest of the re
ir
ulation (the se
ond

region), the transport is mainly westward

and southward oriented. Southeast of the

re
ir
ulation (the third region), it is mainly

eastward and southward oriented with an ad-

ditional northward 
omponent 
loser to the

eastern wall. The two other regions empha-

size the eddy a
tivity in the eddy belt, as de-

�ned above. Sin
e westward propagating ed-

dies with negative (positive) relative vorti
-

ity tend to migrate north (south), it follows

that the eddy vorti
ity transport should be

southward. This is 
onsistent with the sub-

�gure whi
h shows a main southward orien-

tation. As the belt tends to surround the re-


ir
ulation, the eddies propagate �rst to the

southwest and then to the west. The eddy

vorti
ity transport seems to adjust to this

and tend to be oriented �rst to the south-

east and then to the south, following a main

leftward orientation with respe
t to the ed-

dies.

From this analysis, it appears that the role

of the mean vorti
ity transport (not shown)

is not to be underestimated sin
e the eddy

transport seems to mainly remove the ex
ess

of vorti
ity from inner streamlines to outer

streamlines. Close to the western boundary,

the eddy transport shows no parti
ular east-

ward orientation (whi
h would be the signa-

ture of transport into the interior of positive

vorti
ity produ
ed at the wall). The mean

vorti
ity transport is therefore still ne
es-

sary to bring the ex
ess of vorti
ity to the

walls. This is done through several stream-
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lines lying in the vis
ous sublayer, in parti
-

ular around Bump-2, where the relative vor-

ti
ity is at its maximum.

5.4 S
ale Analysis and Dis-


ussion

In order to interpret the large s
ale and

steady 
hara
teristi
s of the Munk 
ir
ula-

tion of the previous se
tions, we propose to

develop some s
aling arguments and 
ompare

these with the numeri
al results. One ap-

proa
h is to derive a 
riterion based on vor-

ti
ity budgets (following Pedlosky) under the

free-slip boundary 
ondition for steady so-

lutions whi
h allows for 
urved boundaries.

For straight walls, the relative vorti
ity is

zero along the boundary. For a strong in-

ertial layer in whi
h we negle
t vis
ous ef-

fe
ts, we know that the absolute vorti
ity is


onserved along a par
el traje
tory (see Fig-

ure 5.18). Let us 
onsider the 
onservation

of absolute vorti
ity for simpli
ity. This one

is �+f = f

0

��L

y

=2 in the southern part of

the domain (upstream of the inertial layer)

where the relative vorti
ity is zero. Sin
e

absolute vorti
ity is 
onserved in the iner-

tial layer, it is reasonable to imagine that

the minimum absolute vorti
ity is su
h that

� + f

0

+ �L

y

=2 = f

0

� �L

y

=2 in the north-

ern part of the domain (downstream of the

inertial layer). Therefore, the minimum rel-

ative vorti
ity is � = ��L

y

. Hen
e, in order

to have an idea of the magnitude of the vis-


ous 
ux of vorti
ity out of the domain, we

only need to estimate the width of the vis-


ous sublayer in the presen
e of the re
ir
ula-

tion. One limitation, though, of this approx-

imation is that the re
ir
ulation is formed

of 
losed 
ontours of both potential vorti
ity

and the streamfun
tion. Hen
e, to the extent

that parti
les remain trapped in the re
ir
u-

lation for long periods, wind for
ing 
an lead

to even lower values of � here. However, from

experien
e, the minimum in the re
ir
ulation

zone is usually superior to (less negative) or

about the number we gave (��L

y

), as long

as the re
ir
ulation zone is 
on�ned to the

northwestern part of the gyre. As soon as

this zone rea
hes the eastern walls (i.e., with

in
reased R

e

), it forms a Fofono�-type gyre

that �lls the whole basin, and for whi
h the

vorti
ity is mu
h lower. Using the vorti
ity

-1e-12 0

1/s2

(a)

-5e-12 0 5e-12

1/s2

(b)

Figure 5.17: (a) Lo
al wind input to the vor-

ti
ity in Geometry V. (b) Lo
al divergen
e

of the eddy transport of vorti
ity in Geom-

etry V 
omputed using the last 6 years of

simulation. (
) Ve
tor plot of the eddy trans-

port of vorti
ity normal to the streamlines in

Geometry V 
omputed using the last 6 years

of simulation. The elevation �eld is plotted

as an analog of the streamlines on ea
h sub-

�gures.
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(
)

Figure 5.17 
ontinued

Figure 5.18: The region in grey represents

where the absolute vorti
ity is approximately


onserved. It en
loses the inertial layer along

the western boundary and the re
ir
ulation

in the north-western 
orner.

budget given in (5.1) and the vis
ous sub-

layer thi
kness, LÆ

0

M

, as the s
ale at whi
h

the vorti
ity varies in the boundary layer, we

derive the simple 
riterion for a 
ir
ulation in

straight walls in the presen
e of a strong re-


ir
ulation (R

e

� 1):

l

e

�

�L

LÆ

0

M

+

I

�

h

� dl � 0 (5.17)

where l

e

is the length of the re
ir
ulation.

The se
ond term, the wind input, in the vor-

ti
ity balan
e is easy to determine. It varies

with h; however, from experien
e, we 
an


onsider h � H. A �rst s
aling for l

e


an be

obtained from (5.17) after substituting (5.2-

5.5):

l

e

�

p

R

e

L . (5.18)

For R

e

= 0:5, we obtain l

e

= 710 km, whi
h

is reasonably 
lose to what is observed in Fig-

ure 5.5.

This s
aling 
an be 
ompared to Ped-

losky's (1996, pages 85-86). Pedlosky eval-

uates the re
ir
ulation length s
ale using

three equalities. The �rst one 
omes from

the equality in the momentum equations be-

tween the adve
tion terms and the di�usion

terms in the vis
ous sublayer in the presen
e

of the re
ir
ulation:

l

�

=

r

�

 

e

l

e

(5.19)

where l

�

is the thi
kness of the sublayer and

 

e

is the transport in the re
ir
ulation. The

se
ond equality 
omes from the transport

in the sublayer being equal to the Sverdrup

transport and from the velo
ity in the sub-

layer being equivalent to the velo
ity at the

edge of the re
ir
ulation:

V

Sv

L

l

�

=

 

e

l

e

. (5.20)

The third equality 
omes from the vorti
ity

input by the wind in the interior of the o
ean

being equal to the vis
ous 
ux of vorti
ity

a
ross the re
ir
ulation edge

� 

e

l

2

�

l

2

e

= �V

Sv

L

2

. (5.21)

These three 
ombined equations allow one to

derive one equation for l

e

:

l

2

e

=

V

3

Sv

L

2

�

2

�

2

(5.22)
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whi
h 
an be simpli�ed using (5.2-5.5) to

l

e

=

Æ

3

I

Æ

3

M

L = R

e

L . (5.23)

Pedlosky's s
aling of l

e

however implies an

in
onsistent de�nition of the vis
ous bound-

ary layer thi
kness along the re
ir
ulation.

The thi
kness for the vis
ous sublayer 
an

be obtained from (5.19-5.23):

Æ

0

M

L = l

�

=

�l

e

V

Sv

L

= R

e

L

�

V

Sv

L

(5.24)

Using again (5.2-5.5), this equation be
omes

Æ

0

M

= R

e

Æ

3

M

Æ

2

I

= Æ

I

. (5.25)

Hen
e, the vis
ous sublayer thi
kness is no

longer dependent on �. This seems 
ounter-

intuitive: for highR

e

, one expe
ts Æ

0

M

<< Æ

I

.

Therefore, we will 
ontinue to use our own

estimate of Æ

0

M

as given in (5.5) and we will

give the equivalent result using Æ

0

M

in the

presen
e of a re
ir
ulation as given by Ped-

losky. The true s
aling might be in between

these two values. Nonetheless, in both 
ases,

the behavior of l

e

with in
reasing Reynolds

number is roughly the same. The re
ir
ula-

tion length qui
kly in
reases with in
reasing

Reynolds number and the Sverdrup interior


an no longer be sustained for R

e

> 1.

Now, in the presen
e of a 
urved 
oastline,

(5.17) is modi�ed to a

ount for the posi-

tive vorti
ity produ
ed at the wall. Sin
e the

re
ir
ulation has 
losed 
ontours of stream-

lines, all the Sverdrup transport goes be-

tween the re
ir
ulation and the wall. We as-

sume this region to be the vis
ous sublayer.

Therefore, the volume transport through the

sublayer is:

LÆ

0

M

v

�

� LV

Sv

(5.26)

where v

�

is the velo
ity in the vis
ous sub-

layer (this is a
tually identi
al to Eq. 5.20)).

This yields

v

�

� Æ

I

p

R

e

�L

2

(5.27)

for the s
aling of v

�

. Using (5.26), we esti-

mated v

�

to be of the order of 0.84 m/s for

R

e

= 3:5. We now need to estimate the vor-

ti
ity produ
ed at the wall. This is of the

order of v

�

=R

s

as given by (5.7). Let us as-

sume that the produ
tion of positive vorti
-

ity is valid within half a wavelength of the


urvy 
oastline and that no vorti
ity is pro-

du
ed in the other half. The se
ond term in

(5.1) be
omes

I

��

�n

dl �

l

e

2

�L

LÆ

0

M

+

l

e

2

v

�

=R

s

+ �L

LÆ

0

M

�

l

e

Æ

0

M

�

� +

1

2

v

�

LR

s

�

.

(5.28)

Therefore, in the presen
e of 
urved 
oast-

lines, the relation (5.17) be
omes:

l

e

�

�V

Sv

L

2

�

Æ

0

M

�

� +

1

2

v

�

LR

s

�

(5.29)

Using the same values as above, Æ

0

M

= 0:040

at R

e

= 0:5 and R

s

= 10 km, this relation

yields a length of l

e

= 340 km.

There are two regimes, depending on the

magnitude of R

s

, the radius of 
urvature of

the 
oastline; one at low 
urvature 
orre-

sponding to (5.18) and the se
ond at high


urvature that we want to investigate. Let us


onsider now the 
ondition under whi
h the

re
ir
ulation is 
ontrolled by the 
urvature of

the 
oastline. This 
ondition 
orresponds to

the se
ond term being larger than the �rst

term in the denominator of (5.29):

R

s

L <

1

2

v

�

�

(5.30)

and after substituting (5.5,5.26), we obtain

R

s

L

<

1

2

p

R

e

Æ

I

. (5.31)

Hen
e, the transition depends on the

Reynolds number. As R

e

in
reases, the ra-

dius of 
urvature 
an in
rease for the se
ond

regime to persist, implying less 
urvy 
oast-

lines. For the se
ond regime, the length of

the re
ir
ulation is governed by the vorti
-

ity produ
ed at the wall and, substituting

(5.5,5.26), is s
aled as

l

e

�

R

s

Æ

I

(5.32)
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Hen
e, the length of the re
ir
ulation in


urved geometries is no longer dependent on

the eddy-vis
osity, �. In other words, the

Reynolds number dependen
e in l

e

disap-

pears. This result is valid as long as the 
ur-

vature satis�es (5.31).

The weakest point in this argument is

probably the estimate of the thi
kness of the

vis
ous sublayer (Æ

0

M

) and the velo
ity in the

sublayer (v

�

) in the presen
e of the re
ir-


ulation. Using the estimation of Pedlosky,

Æ

0

M

= Æ

I

, we would have found

l

e

�

R

s

Æ

I

p

R

e

. (5.33)

By this estimation, l

e

is still dependent on

the Reynolds number, but the dependen
e

would be somewhat weaker when 
ompared

to regular domains (Eq 5.18 or 5.23). More-

over, in the presen
e of 
urved 
oastline, it is

not 
lear what Æ

0

M

be
omes. The vis
ous sub-

layer might be squeezed between the re
ir
u-

lation and the bumps and therefore, the nor-

mal derivative of the vorti
ity might be in-


reased, whi
h favors smaller re
ir
ulations.

It is also possible that the vis
ous sublayer

is not squeezed but that some streamlines of

the re
ir
ulation may lie within it. In su
h a


ase, a proper de�nition of the vis
ous sub-

layer be
omes diÆ
ult. The se
ond point

relates to the form that the vorti
ity takes

around the bumps, whi
h we assume to be


onstant over a half wavelength of the 
urvy


oastline. As we noted in the numeri
al re-

sults, the vorti
ity a
tually behaves quite sin-

gularly at the tip of bumps. An additional

problem relates to the length of the perime-

ter whi
h in
reases with in
reasing number

of bumps and with in
reasing amplitude of

these bumps. This would again favor lower

values for l

e

. Lastly, these s
aling arguments

were based on the assumption that the a
tion

of the transient eddies are negligible, whi
h

may not be the 
ase for suÆ
iently high R

e

.

We now 
ompare the predi
tions from

our s
aling argument about the re
ir
ulation

length s
ale to Figure 5.5. We note that, at

R

e

= 0:5, the re
ir
ulation 
hanges in 
har-

a
ter between Geometry II and III. Between

these two geometries, the strength of the re-


ir
ulation weakens and its length de
reases.

Moreover, for Geometry V, the length of the

re
ir
ulation does not in
rease signi�
antly

with in
reasing R

e

(300 km to 350 km). The

latter observation is 
onsistent with (5.32).

Therefore, the 
ir
ulation seems to be 
on-

trolled by the 
urvature of the geometry be-

tween Geometry II and III. At R

e

= 0:5, the

inequality (5.31) is however only satis�ed for

Geometry V. Moreover, for a �xed radius of


urvature, (5.31) should be satis�ed at a spe-


i�
 R

e

and the 
ir
ulation in that parti
ular

geometry should be 
ontrolled by the radius

of 
urvature beyond that spe
i�
 R

e

. How-

ever, we observe the opposite. For example,

as R

e

in
reases, the length of the re
ir
ula-

tions for Geometry IV in
reases slowly but

then jumps to the energeti
ally high bran
h.

The 
riterion (5.31) may not be very repre-

sentative when the solution tends to jump to

the energeti
ally high bran
h with in
reasing

R

e

. Nonetheless, the formula derived for l

e

seems to yield a relatively good predi
tion

when the 
urvature is large enough (Geome-

try V).
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Figure 5.19: Maximum of the mean elevation

for the three geometries. The maximum ele-

vation is a good proxy for the strength of the

re
ir
ulation.

Now fo
using on results from Geometries I,

IV and V, we derive a predi
tive law for the

strength of the re
ir
ulation based on pre-

vious s
alings. The Geometries IV and V

are 
hosen be
ause they show the most ro-

bust sign that their 
ir
ulation is 
ontrolled

by the 
urvature. The strength of the gyre is

given by the maximum transport through the

basin (dominated by the re
ir
ulation). Let

us de�ne the strength of the re
ir
ulation as

the volume transport through it. The trans-

port is de�ned as the mean velo
ity in the

re
ir
ulation multiplied by its 
ross-se
tion
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length. Let us assume that the magnitudes

of v

�

and l

e

are suÆ
ient to 
hara
terize this

transport. From (5.18) and (5.27), the maxi-

mum transport in regular basins is then given

by

 

max

� Hv

�

l

e

� R

e

Æ

I

�L

3

H (5.34)

and in irregular basins by, substituting (5.27)

and (5.32)

 

max

�

p

R

e

�L

2

HR . (5.35)

Therefore the strength should be sensitive to

the presen
e of the bumps. A good proxy

for the strength of the gyre is the maximum

elevation observed in the basin (be
ause of

the geostrophi
 approximation prevailing in

most of the domain). Figure 5.19 shows the

maximum elevation with respe
t to R

e

. It

appears that the strength of the gyre is de-

pendent on the form of the geometry. There

is a 
lear shift in the strength of the gyre

between Geometries I and IV. Moreover, the

slope (the power relation between h

m

and R

e

or the slope 
oeÆ
ient in a log-log plot) is


lose to unity for the regular geometry (1.06),

whereas it is about 0.5 for Geometry IV. At

R

e

= 0:5, the strength is identi
al for Ge-

ometry IV and V, but the slope is somewhat

less for Geometry V. These results seem to

follow (5.34) and (5.35), and the s
aling for

the sublayer thi
kness in the presen
e of the

re
ir
ulation seems therefore to be 
loser to

(5.5) than to that of Pedlosky.

Another important quantity related to the

strength of the gyre is the kineti
 energy

(KE). We plot KE with respe
t to R

e

.

Sin
e the strength of the re
ir
ulation is de-

pendent on the Reynolds number via v

�

, the

kineti
 energy must depend on the Reynolds

number despite the presen
e of the indenta-

tions, but at mu
h lower rate 
ompared to

the kineti
 energy in regular geometries. By

assuming that, at �rst order, KE is governed

by the energy in the re
ir
ulation, we esti-

mate that in the regular geometry the energy

grows with both the length and the strength

of the re
ir
ulation by using (5.18) and (5.27)

KE � Hv

�

2

l

e

2

� R

2

e

Æ

2

I

�

2

L

6

H (5.36)

whereas it grows only with the strength of

the re
ir
ulation in the presen
e of indenta-

tions, substituting (5.27) and (5.32)

KE � Hv

�

2

l

e

2

� R

e

�

2

L

4

HR

2

. (5.37)
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Figure 5.20: Kineti
 energy of the mean

�elds with respe
t to the boundary Reynolds

number. One point has been plotted on

the high energy bran
h for the �rst geom-

etry. This one was evaluated using a FD-QG

model in a re
tangular domain and is plotted

only for giving the order of the jump.

Figure 5.20 shows the in
rease in the energy

of the mean �elds for Geometries I, IV and

V. The presen
e of a wavy perturbation of

the 
ir
ular geometry retards the jump of

the solution to the high energy bran
h and

the in
rease with the Reynolds number is

mu
h slower in the presen
e of indentations

along the 
oastline. Before the solution in

the intermediate geometry jumps to the high

bran
h, it is noteworthy that the slope for

logKE with respe
t to logR

e

, for the two

irregular geometries, is rather similar. The

slope is 1.7 for Geometry I, and 0.85 for Ge-

ometry IV and 1.0 for V. All a
tual values for

the slopes are rather 
lose to their expe
ted

values, even though this might be 
oin
iden-

tal.

5.5 Adaptivity

We use the adaptive re�nement in order to


he
k the levels of errors in our previous sim-

ulations. The fa
t is that large dis
ontinu-

ities develop in the vorti
ity �eld between el-

ements 
lose to Bump 1 and 2. These dis-


ontinuities are lo
ated 
lose to the tip of

the bumps and at the edge of the re
ir
u-
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lation. We also noted that some dis
ontinu-

ities are asso
iated with the pie
ewise bound-

ary parabolas near in
e
tion points along

the 
oastline where third degree polynomi-

als would be more adequate. We therefore

redesign a mesh with more points along the

western bumps and slightly more in the inte-

rior. On the new mesh, the vorti
ity �eld

is indeed improved but further re�nement

would be needed to obtain a reasonable vor-

ti
ity �eld, espe
ially in proximity of Bump

2 where a strong velo
ity shear exists. More-

over, strong negative vorti
ity seems to orig-

inate from Bump 3 and is shed in front of

Bump 2 with dramati
 
onsequen
es to the

resolution of the vorti
ity �eld. This is pos-

sibly 
onne
ted to two anti
y
loni
 eddies

trapped between Bump 3-4 and 2-3. Starting

from this mesh, we use the adaptive strategy

developed in Se
tion 2.4.3. We have a 
er-

tain level of liberty in the 
hoi
e of the �elds

and the parameters 
ontrolling the sele
tion

of the elements to be re�ned. In Se
tion 3.4,

we used the primitive variables for 
ontrol-

ling the level errors. From a geophysi
al 
uid

perspe
tive, it would be interesting to 
on-

trol the errors using the vorti
ity, whi
h is

a one order higher �eld relative to the ve-

lo
ity. If the latter is 
orre
tly resolved, it

should follow that the other �elds are also

well resolved. We found that this approa
h

was reliable by testing the adaptive strategy

in a simpler experiment. From this experi-

ment, we noted that the velo
ity, elevation

and vorti
ity �elds are indeed well resolved,

and that, for the same parameters �

i

, the

vorti
ity 
ontrolling adaptivity indu
es one

additional level of re�nement. Unfortunately

for Geometry V, we 
ould not a�ord in terms

of 
omputational 
ost more than one adap-

tive 
y
le. Therefore any 
laim of 
onver-

gen
e has to be dis
arded. After one 
y
le

(Fig. 5.21), the re�ned elements are 
on
en-

trated along the tip of Bump 2 and less near

Bump 1. Of 
ourse, the re�nement has a


ost. The simulation on the re�ned mesh is

about four times more expensive than that

on the original mesh, due to time-step limi-

tations.

We now 
ompare the two experiments for

the Geometry V and � = 100 m

2

/s. Fig-

ure 5.22 shows the total (kineti
 + poten-

tial) energy for the two experiments. The

re�ned and original results are rather simi-

lar for the �rst year, but they depart after-

wards. However, we see the same approxi-

Figure 5.21: Mesh for the original and the

re�ned runs.
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mate low frequen
y (about 1000 day period)

behavior, whi
h is the signature of a Rossby

basin mode. The higher frequen
ies (small

eddies) may be responsible for the most of

the dis
repan
y. What is more intriguing is

that the Kelvin wave a
tivity in
reases sig-

ni�
antly for the re�ned experiment. Be-

tween day 4400 and 4800, the amplitude of

the Kelvin wave on both meshes at the same

lo
ation is rather similar, with the amplitude

on the re�ned mesh being slightly larger.

Then, after day 5000, the amplitude on the

re�ned mesh qui
kly doubles relative to the

amplitude on the original mesh and this fa
-

tor then remains more or less 
onstant. Pre-

sumably, the produ
tion of Kelvin waves is

enhan
ed by the in
reased resolution in the

region of Bump 2 where Kelvin waves are

generated. As with the original mesh, the

amplitude of the Kelvin waves on the re�ned

mesh are anti-
orrelated with the total en-

ergy. However, the in
reased amplitude of

Kelvin waves on the re�ned mesh did not

lead to a de
rease of the total energy between

the original and re�ned meshes. This raises

two possibilities. Either the Kelvin waves are

only marginal in the dissipation of the energy

or, more probably, this 
ould be an artifa
t

of the resolution. On the original mesh, it is

possible that pro
esses lo
ated near Bump 2

were too dissipative be
ause of the too 
oarse

resolution.

The overall stru
ture of the mean eleva-

tion �eld is rather similar for the original

and re�ned meshes (Fig. 5.24). Although

not noti
eable in Fig. 5.24, an important im-

provement lies in the stru
ture of the eleva-

tion �eld 
lose to the tip of Bump 1, 2 and

3, where the elevation shows a rather singu-

lar behavior on the original mesh. By 
on-

trast, the elevation �eld at the same lo
ations

is mu
h smoother and the amplitude of the

peaks in elevation mu
h less on the re�ned

mesh. The mean total energy for the re�ned

mesh tends to be slightly larger than that on

the original mesh, although, due to the rel-

ative short period of observation (6 years),

this may not be signi�
ant. Mu
h improve-

ment 
an be noti
ed in the mean vorti
ity

�eld. The strong peak at Bump 2 is bet-

ter resolved (although the amplitude is not

severely modi�ed), as well as the zone of neg-

ative vorti
ity near the same bump. This un-

dershoot seems to be real and not an artifa
t

of the la
k of resolution on the original mesh.

Some improvement is also noti
eable in the

interior of the basin, likely due to a slightly

improved resolution on the new mesh in the

interior. The edge of the re
ir
ulation would

stand some re�nement. However, sin
e the

largest dis
ontinuities in the vorti
ity �eld

are 
lose to the tip of the bumps, the mesh

is �rst re�ned there. To 
on
lude, we gain,

using the adaptive strategy, improvements

over the 
omplex pro
esses happening 
lose

to the bumps and 
onsequently some im-

provement of the nonlinear intera
tions and

related energeti
s (the in
reased amplitude

of the Kelvin modes). However, there are no

signi�
ant 
hanges in the overall mean 
ir
u-

lation.
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Figure 5.22: Total energy for the last 6 years

of simulation for the original and re�ned

meshes. The two 
urves are very similar for

the �rst year and then depart slowly from

ea
h other.

5.6 Con
lusions

We show appli
ations of a dis
ontinuous

spe
tral element model to the problem of the

inertial runaway under the free-slip 
ondition

in irregular geometries. We �rst show that

more traditional numeri
al methods, su
h as

the �nite di�eren
e methods, fail to 
onverge

in irregular domains for the boundary 
on-

dition under interest. Se
ond, the main re-

sults of this appli
ation of a spe
tral element

model show that, in the presen
e of irreg-

ular boundaries, the jump to the high en-

ergeti
 bran
h is 
onsiderably retarded, o
-


urring at a higher boundary layer Reynolds
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Figure 5.25: Mean vorti
ity �elds for the

original mesh and the re�ned mesh.
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number. The presen
e of smooth bumps

along the 
oastline introdu
es a sour
e of

positive vorti
ity and thus a sour
e of pro-

du
tion of eddies through barotropi
 insta-

bilities. From the point of view of the vor-

ti
ity budget, positive vorti
ities along the

walls ease the pro
ess of balan
ing the wind

input with stronger vis
ous 
uxes of vorti
-

ity at the walls. Eddies are also important

to the vorti
ity budget be
ause they trans-

port the vorti
ity through the inertial layer

to the vis
ous sublayer where it 
an be dis-

sipated. However, we noted that the eddies

do not play a large role in the vorti
ity bud-

get. We also noted the presen
e of strong

Kelvin waves that may provide a me
ha-

nism for transferring energy to smaller s
ales

and dissipate it. Of 
ourse, as the Reynolds

number is in
reased (and � de
reased), these

Kelvin waves are no more suÆ
ient to dissi-

pate the energy. Then, other nonlinear pro-


esses must 
ome into pla
e, su
h as triad

intera
tions developed by Bartello (1995) be-

tween low and fast modes. Of interest is

to note that the main Rossby mode of os-


illation of the basin 
ontrasts with that in

re
tangular geometries where it is usually ob-

served that the main mode of os
illation is a

basin s
ale Rossby wave of large amplitude

(observable in both QG and SW models).

The weak presen
e of su
h a mode in our sim-

ulation may mean that this mode is damped

by the 
omplex geometry of the basin.

The assessment of our s
aling arguments

brings up some interesting issues. First, our

s
aling arguments are surprisingly 
lose to

the numeri
al results despite obvious theo-

reti
al weaknesses. Be
ause those arguments

assumed laminar boundary layers, this im-

plies that produ
tion of eddies was insuÆ-


ient, not only to invalidate our s
aling, but

also to prevent inertial runaway. It is worth


ommenting that the double gyre 
ir
ulation

usually indu
es many more eddies. In or-

der to get more eddies, the single gyre 
ir-


ulation would require more 
urved bound-

aries. For instan
e, it would be interesting

to investigate what sort of equilibrium 
an

be rea
hed in basins were the boundaries are

so irregular that free-slip 
ows have no 
hoi
e

but to separate from the boundaries at ea
h

bump. In su
h a 
ase, it is however likely

that the assumptions on whi
h the SW equa-

tions are based would be no longer valid.

For instan
e, the fa
t that the region around

Bump 2 requires a resolution below 1 km

implies that the SW assumption is breaking

down. Moreover, the small eddy produ
tion

points out to la
k of physi
al pro
esses repre-

sented by the SW models. Baro
lini
 insta-

bility, for instan
e, whi
h is a main 
ontrib-

utor to turbulen
e in both the atmosphere

and the o
ean seems to be needed in order

to de�nitively 
lose the inertial runaway is-

sue in single gyre experiment. In su
h a


ase, we would need to run expensive three-

dimensional baro
lini
 models. Finally we

demonstrate the use of an adaptive strategy

in o
ean modelling. We note however that

the 
ost of su
h a method is higher than us-

ing �xed meshes in time (see Se
tion 3.4).

Nonetheless, it provides an automated pro-


edure for resolving and lo
alizing fronts and

strong nonlinear 
urrents whi
h would other-

wise require tedious manual remeshing. For

instan
e, we noted that the results from the

adapted mesh yield stronger Kelvin waves,

apparently related to the in
reased resolu-

tion in the regions of Kelvin wave produ
-

tion.



Chapter 6

Con
lusions

In this thesis, we were interested in assess-

ing the performan
e of di�erent numeri
al

methods for modelling the o
ean in 
omplex

geometries. Complex geometries are repre-

sented by step-like walls in the most 
onven-

tional numeri
al method used in o
eanogra-

phy, namely the �nite di�erent (FD) method.

The presen
e of these steps may be detrimen-

tal to the representation of 
urrents lo
ated

along the boundaries, espe
ially the west-

ern return 
urrents if we 
onsider the sim-

ple Munk gyre problem. From this perspe
-

tive, �nite element (FE) methods and spe
-

tral element (SE) methods with their a

u-

rate representation of the 
oastlines may pro-

vide more a

urate solutions of the o
ean 
ir-


ulation.

In Chapter 3, we 
ompare these di�er-

ent numeri
al methods for a few test prob-

lems. In a re
tangular geometry, the FD

method is always more a

urate at a given


ost than FE methods using linear basis

fun
tions. However, for a simple analyti-


al linear solution in a 
ir
ular domain, we

showed that 
onventional FD methods tend

to have trun
ation orders between unity and

two, instead of two. In that 
ase FE meth-

ods provide more a

urate solutions at the

same 
ost than do FD methods. For nonlin-

ear solutions and in a re
tangular domain,

all tested FE models showed a bias whi
h

tends to be robust with in
reasing resolu-

tion. In most �nite element models, the

problem is linked to numeri
al dissipative ef-

fe
ts that were too small to be dete
ted in

the linear test-
ases but that were large in

the nonlinear test-
ase. These dissipative

e�e
ts are related to the stability proper-

ties of ea
h of the s
hemes and how ea
h of

them �nds its way around the stability 
on-

dition. Only one tested FE model satis�es to

the so-
alled Ladyzhenskaya-Babuska-Brezzi

(LBB) 
ondition for FE models. This model

showed also some signs of over-dissipation

but in that 
ase, the problem was more re-

lated to the use of a semi-Lagrangian treat-

ment of the time dis
retization of the equa-

tions. Unfortunately, we have not made use

of a FE model satisfying to the LBB 
ondi-

tion with an Eulerian treatment of the equa-

tions. However, we 
an spe
ulate based on

the results of Chapter 3 that su
h a model

would not be as 
ost-e�e
tive as the tested

SE model. Nonetheless, the use of a LBB-


omplying FE model may prove to be more

appropriate than FD models when spatially

variable mesh 
apabilities are required, su
h

as for resolving straits and inlets.

The tested element model shows high or-

der trun
ation errors for linear and nonlin-

ear test-
ases in re
tangular and 
ir
ular do-

mains. In the latter 
ase, we rea
hed a lim-

itation due to our use of pie
ewise parabo-

las for the des
ription of 
urved geometries.

To test 
ost-e�e
tiveness, we 
ompared the

SE and FD models for the nonlinear Munk

problem in a re
tangular domain. This test

reveals that the a

ura
y of the SE method

has to be about 1% of the true solution to be

more e�e
tive than the se
ond order C-grid

FD model. However, for nonlinear problems

the SE method presents a de
isive advantage

that its a

ura
y remains more or less iden-

ti
al in re
tangular and generally 
urved do-

mains whereas that of the �nite di�eren
e

methods degrades.

Finally, we tested with su

ess an adaptive

mesh strategy in a time-stepping mode. We

designed an automated pro
edure that esti-

mates the lo
al error and re�nes the mesh

a

ordingly in regions of largest errors as the

simulation runs. This was tested for the

Munk gyre problem. We noted that, when

90
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the required a

ura
y was high enough, most

of the re�nement goes into resolving the ini-

tial Kelvin waves whi
h is ex
ited by the

onset of the wind and propagate along the

boundary. After this initial transient pro-


ess 
omes to rest, the mesh is automati
ally

dere�ned along the boundary. In terms of


ost, the adaptive pro
edure proves to be

slightly less eÆ
ient than to run the model

on a �xed mesh in time. However, this pro-


edure might be useful in 
ontexts for whi
h

the solution is not known a priori. In su
h


ases, the lo
ation of sharp fronts is not

known and may require a tedious manual

remeshing in order to resolve these features.

Sometimes, this pro
ess has to be done iter-

atively a large number of times and, in su
h

a 
ase, an adaptive strategy will prove far

superior.

In Chapter 4, we fo
used on the in
u-

en
e of step-like walls in the �nite di�er-

en
e methods, extending the study of Ad-


roft and Marshall. We used vorti
ity bud-

gets as a diagnosti
 tool in order to assess

the a

ura
y of the numeri
al solutions. We

showed that the a

ura
y of FD methods de-

grades in presen
e of steps along the bound-

aries and that the trun
ation order is low-

ered. Depending on the spe
i�
 numeri
s,

we estimated that the trun
ation error varies

between the zeroth and se
ond order. In

general, we found that vorti
ity budgets are

not very a

urate due to the presen
e of ex-

tra terms, su
h as the adve
tion of vorti
-

ity, whi
h do not appear in the analyti
al

budget. Surprisingly, we noted that a quasi-

geostrophi
 model does not lead to signi�-


antly more a

urate vorti
ity budgets than

those given by shallow water models, even

though the former type of models expli
itly

solves for the vorti
ity equation. We also

used a vorti
ity budget analysis on a shallow

water B-grid model with free-slip boundary


onditions whi
h proved not to 
onverge to

a steady state with time, whereas the equiv-

alent C-grid model does. In fa
t, this par-

ti
ular B-grid implementation proved to be

inadequate.

In Chapter 5, we explored the theoreti-


al possibility that free-slip 
ir
ulations 
an

develop their own eddies if the 
oastline is


urved enough. This 
hapter 
an be 
on-

sidered as an appli
ation of the spe
tral ele-

ment method and a 
ontribution to the un-

derstanding of the o
ean 
ir
ulation from a

theoreti
al point of view. Sin
e it is not 
lear

what type of boundary 
onditions is the most

realisti
 to use at typi
al or even high res-

olution in o
ean modelling, there is no ob-

vious reason to dis
ard the free-slip bound-

ary 
ondition

1

. So far, time dependent sim-

ulations of the nonlinear Munk problem in

re
tangular domains under free-slip bound-

ary 
onditions show that the solution is very

steady on
e it rea
hes its equilibrium. That

is, no eddies develop. Moreover, under the

same boundary 
ondition, the solution be-


omes 
ompletely unrealisti
 passed a 
ertain

Reynolds number and still remains steady.

Hen
e, the ne
essary eddies that transport

the ex
ess of vorti
ity to the walls are absent

in these simulations. Therefore, these simu-

lations in re
tangular domains make a good


ase against the use of the free-slip bound-

ary 
ondition. This was 
ertainly a strong

in
entive to use instead the no-slip bound-

ary 
ondition. However, the real o
eans

present irregular 
oastlines whi
h may be

the key-fa
tor absent from these earlier ex-

periments. We therefore investigated the

in
uen
e of having 
urvy 
oastlines in the

otherwise usual Munk problem for varying

Reynolds number. The only model available

to us that 
ould perform su
h a task with a

high degree of a

ura
y was the SE model.

The �nite di�eren
e models are too sensitive

to the presen
e of steps along the 
oastline

and the tested FE models are too dissipative

for the Reynolds numbers we are interested

in.

From s
aling arguments and assuming a

steady state with no transient eddies, we

were able to derive that the bumps along the


oastline 
ause the 
ir
ulation to slow down


ompared to the no-bump 
ase. This was due

to the produ
tion of positive relative vorti
-

ity at the walls 
lose to the tip of the bumps

for a mid-latitude gyre in the northern hemi-

sphere

2

. Furthermore, as the Reynolds num-

ber in
reases, we predi
ted that the total ki-

neti
 energy should in
rease at mu
h slower

rate than that of the no-bump 
ase. If

1

The no-slip and free-slip boundary 
onditions are

the traditional boundary 
onditions used in o
ean

modelling but they are not the only ones possible.

In fa
t, some other parametrizations have been pro-

posed. See for instan
e Straub (1999).

2

the sign of the relative vorti
ity produ
ed at the

wall would be negative in the southern hemipshere

for a 
y
loni
 gyre but our results would still apply.
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these free-slip 
ir
ulations were able to pro-

du
e their own eddies, it would be possible

that even lower total kineti
 energy values


ould be rea
hed. Therefore, the presen
e

of bumps along the 
oastline might be suÆ-


ient so that the main 
ir
ulation es
apes the

anti-intuitive fate of not 
onverging to some

statisti
al steady state as the eddy vis
osity

is de
reased. This fate is known as the iner-

tial runaway and represents our inability to

explain how the nonlinear pro
esses of sim-

ple 
ows are suÆ
ient to balan
e a de
rease

of poorly known di�usive parameters, su
h

as the eddy vis
osity.

Unfortunately, only the �rst predi
tion

was veri�ed; that the rate of in
rease of the

total kineti
 energy with in
reasing Reynolds

number was de
reased, but not reversed,


ontrary to our se
ond hypothesis. We also

noted a dependen
e on the lo
al 
urvature of

the 
oastline. The higher the 
urvature, the

lower the total kineti
 energy. Ex
ept for the

largest 
urvature, the solutions jump to an

unrealisti
 state passed a 
riti
al Reynolds

number. For the largest 
urvature and the

largest Reynolds number, we observe some

eddy a
tivity but not enough to slow down

the total kineti
 energy in
rease 
ompared

to our s
aling arguments. In fa
t, most of

the vorti
ity balan
e seems to be a
hieved

by the main 
ir
ulation. Indeed, the vorti
-

ity is large and positive along a signi�
ant

portion of the bumps whi
h leads to a large


ux of vorti
ity at the walls. Moreover, we

observed that the vorti
ity tends to follow

a rather singular behavior along the bumps

even though the bumps are smoothly 
urved.

This was veri�ed by using an adaptive mesh

algorithm whi
h in
reases the resolution of

the model where the errors are the largest.

More eddies 
ould have been generated by

larger 
urvature. However, we feared that we

rea
hed the validity limit, in terms of length

s
ales of the observed pro
esses, of the sim-

ple equations we were using, namely the shal-

low water equations. Baro
lini
 models may

be required to represent the small s
ales fea-

tures o

urring along the western boundary.

One other important limitation of this

study that we need to mention is related to

the \fra
tal nature" of the 
oastline. From

that perspe
tive, it is quite unreasonable to

de�ne \one" 
urvature of the 
oastline, as

this one is modi�ed with in
reasing sampling

of the 
oastline. Rather, we limit ourselves

to the study of the in
uen
e of 
urved 
oast-

lines whose radius of 
urvature falls in the

range of s
ales of interest (from the radius of

deformation and the boundary layer widths

to the basin s
ale). A more realisti
 ap-

proa
h would be to use a spe
trum of wave-

lengths and amplitudes 
onsistent with real-

isti
 
oastlines. The overall result might not

be very di�erent from those presented in this

thesis, though.

The SE model showed great advantages as

a tool in order to address theoreti
al issues

su
h as the inertial runaway problem. As it


aptures some features of the 
oastline, su
h

as the 
urvature, we 
ould address the is-

sue of free-slip 
ows in presen
e of 
urved


oastlines. However, its general variable res-

olution 
oupled to an adaptive mesh re�ne-

ment enables this model to address the run-

away problem and other theoreti
al aspe
ts

linked to nonlinear 
ows in presen
e of ir-

regular 
oastlines for any kind of boundary


ondition. Nonetheless, the model still has

to prove its e�e
tiveness in the more general

baro
lini
 framework. The verti
al represen-

tation is 
ertainly a very 
omplex issue, and

di�erent strategies are possible. S
hemati-


ally, the verti
al representation 
an be z- or

�- or isopy
nal levelled. Of the three, the

� seems to be the most natural to the SE

method be
ause it allows for a polynomial

des
ription in the verti
al as well. However,

it does not o�er a good 
ontrol on the par-

ti
ular depth range to resolve. It therefore

may have diÆ
ulties in resolving sharp tem-

perature or salinity gradients and may lead

to Gibbs os
illations. The same problem ex-

ists in low-order numeri
al methods, su
h as

�nite di�eren
e models. However, it simply

leads to a

ura
y problems rather than sta-

bility problems.

This study was obviously biased in fo
us-

ing on one parti
ular boundary 
ondition,

the free-slip boundary 
ondition. Under this

boundary 
ondition, it is known that the FD

methods do poorly in presen
e of steps. It

may therefore seem obvious that SE meth-

ods do better. One may ask about the other

well known boundary 
ondition, the no-slip


ondition. For the no-slip boundary 
ondi-

tion, we may assume that the FD methods

in irregular domains do as well as they do for

the nonlinear Munk problem in a re
tangular

domain (Se
tion 3.4). In the latter 
ase, we

showed that the SE model does better only
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for high enough resolutions at whi
h the er-

ror is below 1%. At this range of resolution,

the error is low enough that FD methods are

still 
ompetitive. Unless one is interested in

representing a

urately the fast transients of

the o
ean su
h as Kelvin waves, for whi
h the

FD methods do poorly independently of the

boundary 
ondition, the FD methods have

still a long future in front of them. This last

statement is also biased by the assumption

governing the primitive equations. If, for in-

stan
e, faster and bigger 
omputers allow for

very high resolution non-hydrostati
 simula-

tions (whi
h require the inversion of a 3D ma-

trix problem), then the FE methods might

be attra
tive again, sin
e their main over-

head, 
onsisting of the inversion of a matrix

problem even when the equations are solved

expli
itly in time, is no more.

The last point we would like to men-

tion is related to the e�e
t of \real" steps

present along the 
oastline as opposed to

\fake steps" that FD dis
retization tend to

generate. As they are singular features, no

numeri
al method is able to model them,

although some analyti
al approa
hes were

proposed (Cherniawsky and Leblond, 1986).

Nevertheless, real steps 
an be approa
hed as

the limit of in
reasing to in�nity the 
urva-

ture of the bumps. From that point of view,

we 
an derive some qualitative 
on
lusions

based on the results obtained in Chapter 5

with the SE model. It seems that steps al-

ways have a dissipative e�e
t and that all

the �elds will be singular 
lose to the step.

Therefore, the 
orre
ted version of Ad
roft

and Marshall (the B 
ombination of Chap-

ter 4) is biased be
ause it under-represents

the e�e
t of steps by assuming that they are

non-existent to the point that 
ir
ulations

in rotated basins look similar to 
ir
ulation

in non-rotated basins. Hen
e, their method

is very su

essful in rotated re
tangular do-

mains but fails in more generally irregular

domains. The 
orre
t solution in presen
e of

irregular domains depends on the irregular-

ity of the domain. It lies between the 
or-

re
ted version of Ad
roft and Marshall and

the traditional implementation of the C-grid

model whi
h is more dissipative. Ultimately,

the true solution re
e
ts the fra
tal nature

of the 
oastline.



Appendix A

An A-grid Energy Conserving

Formulation

i 
ell index

V ol

i


ell Volume

F

b

normal oriented fa
e length

�

b

any variable

interpolated

at the 
enter

of fa
e

neigh fa
e index for the i-
ell

Table A.1: Notations for the �nite volume

method

It is possible to formulate an energy 
on-

serving s
heme on a A-grid and generalize it

to a �nite volume formulation (i.e., irregular

domains). We will use the notations of the

latter (Table A.1). The time integration has

to be done through an iteration pro
ess sin
e

the formulation is semi-impli
it in time, in-


luding the non-linear terms.
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i

u
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i

� u

n

i
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+(f

i
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� (u

i

h)

�

b

= 0 (A.1)

where �

�

= (�

n+1

+ �

n

)=2 for any �. By

multiplying A.1 by u

�

i

h

�

i

, we get

V ol

i

h

�

i

u

n+1

i

2

� u

n

i

2

�t

+

X

neigh

F

b

� u
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i

h

�

i

B

�

b

= 0 .

(A.2)

Let us de�ne K = u

2

and use U = hu, then

A.2 reads

V ol

i

h

�

i

K

n+1

i

�K

n

i

�t

+

X

neigh

F

b

�U

�

i

B

�

b

= 0

(A.3)

and let us multiply A.1 by K

�

i

and use the

equivalen
e �h=�t = ��=�t

V ol

i

K

�

i

h

n+1

i

� h

n

i

�t

+

X

neigh

K

�

i

F

b

�U

�

b

= 0 .

(A.4)

We then sum together A.3 and A.4 in order

to get an equation for the kineti
 energy
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� (K
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b

) = 0 .

(A.5)

The equation for the potential energy is given

by multiplying A.1 by g�

�

i

V ol

i

g(�

n+1

i

)

2

� g(�

n

i

)

2

�t

+

X

neigh

g�

�

i

F

b

�U

�

b
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(A.6)

Let us de�ne e

k

= g�

2

+ hK. We then get

the total energy equation by summing A.5

and A.6

V ol
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k
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n+1
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� (e
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(A.7)
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Therefore, the total energy budget is

TKE

n+1

� TKE

n

=

X
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(A.8)

Hen
e, the 
onservation properties of this

s
heme 
omes from the assumption about

�

b

, the way we interpolate the data onto the

fa
es of the 
ells. The usual assumption is

to take for any �, �

b

= 1=2(�

i

+ �

j

) where j

is the index of the neighboring 
ell. Be
ause

P

neigh

F

b

= 0, the right hand side simpli�es

to

TKE

n+1

� TKE

n

= ��t

X

i

X

neigh

F

b

�

B

�
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U

�
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�
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2
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(A.9)

The right hand side vanishes for open do-

mains. For 
losed domains, some assump-

tions are required. If we imagine a �
titious


ell on the other side of the wall, we must

have

F

b

�

�

B

�

i

U

�

j

+U

�

i

B

�

j

�

= 0 . (A.10)

This 
an be satis�ed ifB

�

j

= B

�

i

. We are then

left with satisfying F

b

� (U

�

i

+U

�

j

) = 0. This


orresponds to enfor
ing that the velo
ity is

tangential at the wall. This is a very reason-

able assumption sin
e it mat
hes the invis
id

boundary 
ondition. Hen
e, the energy 
an

be 
onserved for an A-grid s
heme in absen
e

of dissipation pro
esses and for
ing.

In pra
ti
e, this s
heme only retards the

up
oming of spurious modes. In order to


ontrol the spurious modes, one idea would

be to make the s
heme also 
onserve the en-

strophy. A

ording to Abramopoulos (1988),

this is a
hievable but a unreasonable pri
e.



Appendix B

Model Vorti
ity Budget on a

B-grid

Using Equations 2.21 and 2.22, the model

vorti
ity equation is obtained at the 
enter

of the 
ell (also the � lo
ation):
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(B.1)

Study of this equation shows that all terms


an
el out in the interior. However, 
lose

to 
orners, they are not ne
essarily zero.

The pressure term, hereafter I

P

, for instan
e

gives after summation over the domain and

emphasizing the terms 
lose to the northeast


orner (assuming �x = �y = �):

I

P

=

X
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X
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g

2
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� �

�

i;j+1

�

+ � � � + other 
orner terms

(B.2)

where �

�

is the extrapolated value of the ele-

vation along the wall and (i; j) are the indi
es

taken at the velo
ity point dire
tly southwest

of the 
orner. When using a linear extrap-

olating law, �

�

i+1;j

= 3=2�

ij

� 1=2�

i�1;j

, I

P

be
omes

I

P

=

g

4

(�

i;j�1

� �

i�1;j

)

+ � � �+ other 
orner terms .

(B.3)

Hen
e, the pressure term in the vorti
ity

equation does not 
an
el out. However, for

the adve
tive terms, hereafter I

adv

, we have

I

adv

=

X

i

X

j

�x�y

�

D

+

x

u�

x

v + v�

y

v

y

�D

+

y

u�
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u+ v�

y

u

x

�

(B.4)

whi
h simpli�es �rst to a 
ir
ulation integral

of the form

I

adv

=

X

uru ��l . (B.5)

One 
an prove that this summation 
an
els

out. Hen
e, I

adv

= 0. The same o

urs for

the Coriolis terms be
ause the summation


an be re
ast as a summation of 
ux nor-

mal to the wall at velo
ity points along the

wall, whi
h are zero due to the impermeabil-

ity 
ondition. Therefore, the model vorti
ity

budget redu
es in the 
ase of the B-grid to

X

i

X

j

��

�t

�x�y = F

i

+ F

vis

� I

P

. (B.6)

Hen
e I

P

is present in the model budget

whereas it should ideally be zero. Note that

a zero order extrapolation (�

�

i+1;j

= �

ij

) re-

sults in the 
an
ellation of I

P

. However, this

extrapolation leads to 
ounter
urrents along

the boundaries for the Munk problem on a

beta plane, as shown in Se
tion 4.2.
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