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' ABSTRACT

Comprehension of global oeani urrents

and, ultimately, of limate variability re-

quires the use of omputer modelling. Al-

though muh e�ort has been spent on the

auray of traditional �nite di�erene (FD)

models used in oean modelling, there are

still onerns, espeially sine these models

have a rude representation of the geometry

of oeani basins. Suh a rude representa-

tion may inuene the auray of modelling

boundary urrents, or unrealistily represent

the impinging of eddies or the propagation

of Kelvin waves along the oastline. This

motivated the use of alternative modelling

tehniques applied on ompletely irregular

geometries suh as �nite element (FE) and

spetral element (SE) methods. In this the-

sis, we want to investigate the auray and

ost-e�etiveness of these three numerial

methods in irregular domains and to under-

stand to whih extent the unstrutured grid

FE and SE methods onstitute an improve-

ment over the more traditional FD meth-

ods. To aomplish this, we limit ourselves

to modelling the shallow water equations in

presene of irregular oastlines with no bot-

tom topography.

In the �rst part of the thesis, we ompare

the performanes of FD methods on Carte-

sian grids with FE and SE methods in var-

ious geometries for linear and nonlinear ap-

pliations. We argue that the SE method is

to a ertain extent superior to FD methods.

In a seond part, we study the inuene of

step-like walls on vortiity budgets for wind-

driven shallow water FD models. We show

that vortiity budgets an be very sensitive

to the FD formulation. This has ertain im-

pliations for using vortiity budgets as a di-

agnosti tool in FD models. In the �nal part,

we use a SE shallow water model for inves-

tigating the \inertial runaway problem" in

irregular domains for the single-gyre Munk

problem. Ideally, one would like the statisti-

al equilibrium observed at large Reynolds

number to be insensitive to model hoies

that are not well founded, e.g., the preise

value of the visous oeÆient, and hoie of

dynami boundary ondition. Simple models

of geophysial ows are indeed very sensitive

to these hoies. For example, ows typi-

ally onverge to unrealistily strong irula-

tions, partiularly under free-slip boundary

onditions, even at rather modest Reynolds

numbers. This is referred to as the \inertial

runaway problem". We show that the addi-

tion of irregular oastlines to the anonial

problem helps to slow onsiderably the ir-

ulation, but does not prevent runway.
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La ompr�ehension des ourants

o�eaniques globaux et, ultimement, de

la varibilit�e limatique requiert l'usage de la

mod�elisation num�erique. Bien que beauoup

d'e�ort ait �et�e d�epens�e dans l'am�elioration

des mod�eles traditionnels aux di�erenes

�nies (DF) utilis�es dans la mod�elisation

o�eanique, il reste des interrogations on-

ernant la pr�eision de es mod�eles, et

e d'autant plus que es mod�eles ont une

repr�esentation tr�es grossi�ere de la g�eom�etrie

des bassins o�eaniques. Une telle grossi�ere

repr�esentation peut modi�er la pr�eision

des ourants le long des fronti�eres, ou mal

repr�esenter le ho des tourbillons sur, ou la

propagation des ondes de Kelvin le long de

la fronti�ere. Cei a motiv�e l'utilisation des

m�ethodes num�eriques alternatives omme

les �el�ements �nis (EF) ou les �el�ements spe-

traux (ES) qui s'appliquent �a des g�eom�etries

ompl�etement irr�eguli�eres. Dans ette th�ese,

nous voulons �etudier la pr�eision et le oût

de es trois types de m�ethodes num�eriques

dans des domaines irr�eguliers et omprendre

jusqu'�a quel point les m�ethodes EF et ES

fontionnant sur des grilles irr�eguli�eres on-

stituent un progr�es ompar�e aux m�ethodes

DF traditionnelles. Dans e but, nous

nous limitons �a mod�eliser les �equations en

eaux peu profondes en pr�esene des ôtes

irr�eguli�eres sans topographie.

Dans la premi�ere partie de ette th�ese,

nous omparons les performanes des

m�ethodes DF sur des grilles art�esiennes

ave les m�ethodes EF et ES dans des

g�eom�etries di��erentes pour des probl�emes

lin�eaires et non-lin�eaires. Nous argumentons

que la m�ethode ES est, dans une ertaine

mesure, sup�erieure aux m�ethodes DF. Dans

la seonde partie, nous �etudions l'inuene

des marhes d'esalier pr�esentes le long des

murs sur les budgets de vortiit�e pour des

mod�eles DF en eaux peu profondes for�es

par le vent. Nous montrons que les budgets

de vortiit�e peuvent être tr�es sensibles �a la

formulation DF utilis�ee. Cei a ertaines

impliations onernant l'utilisation des

budgets de vortiit�e omme outil de di-

agnostique dans les mod�eles DF. Dans la

derni�ere partie, nous utilisons un mod�ele

ES en eaux peu profondes pour �etudier

le probl�eme de \fuite inertielle" dans des

domaines irr�eguliers pour le probl�eme de

Munk non-lin�eaire. Id�ealement, on voudrait

que l'�equilibre statistique observ�e �a grand

nombre de Reynolds soit insensible au hoix

fait onernant des approximations mal|ou

peu|fond�ees du mod�ele, omme la valeur

du oeÆient de visosit�e turbulente ou le

type de ondition fronti�ere. Les mod�eles

simples de uides g�eophysiques ont en e�et

tendane �a être tr�es sensibles. Par exemple,

l'�eoulement onverge vers des irulations

totalement irr�ealistes, partiuli�erement pour

une ondition fronti�ere de glissement libre,

et e même pour des nombres raisonnables

de Reynolds. C'est e que l'on nomme \fuite

inertielle". Nous montrons que l'inlusion de

ôtes irr�eguli�eres dans e probl�eme anon-

ique permet de ralentir onsid�erablement la

irulation, mais n'�elimine pas pour autant

le probl�eme de la fuite inertielle.
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CONTRIBUTIONS

In Chapter 2, we develop our own adap-

tive spetral element method whih is an au-

tomati proedure for assessing loal errors

and inreasing, aordingly, the resolution of

the mesh. Test and use of this proedure are

made in Chapters 3 and 5. We also develop

our own urved spetral element method for

better representing smoothly varying oast-

lines.

In Chapter 3, we develop a series of test

ases in order to study the onvergene

with resolution of the auray and ost-

e�etiveness of eah sheme in regular and

irregular domains. The originality of this ap-

proah stems from the variety of numerial

methods we test and ompare, and the thor-

ough study of the inuene of the resolution

on them. We explore the limitations of eah

numerial sheme.

In Chapter 4, we use vortiity budgets

as a way to assess the auray of di�erent

numerial formulations for modelling wind

driven oean gyres in a retangular basin.

In partiular, we demonstrate that, for �nite

di�erene formulations, the advetive terms

in the vortiity budget do not integrate to

zero. This error an be exaerbated by the

presene of near step-like strutures along

the boundary, suh as those that our when

a straight oastline lies at an angle to the

oordinate axes used for disretization. It is

further found that this problem is minimized

for ertain numerial hoies relating to the

treatment of the advetive and visous terms.

In Chapter 5, we use a spetral element

model to investigate the inertial runaway

problem (i.e., that models produe unreal-

istially strong ows as dissipative param-

eters are redued towards what are onsid-

ered realisti values) in irregular domains.

In partiular, we show that small sale (but

resolved) features in the oastlines lead to

the generation of �ne sale struture in the

vortiity �eld, where the Rossby number

an beome of order unity, and the quasi-

geostrophi approximation beomes suspet.

That these our under free-slip boundary

ondition ontrasts the lassi, retangular

basin ase. We �nd that small sale stru-

tures in the oastline at to slow, but not to

stop inertial runaway.
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Chapter 1

Introdution

Modelling the oean has beome an essen-

tial omponent of oastal and navigational

hazard prevention (beah erosion, pollutant

transport, tidal or storm surge, ie drift,

wave height). Moreover, the oean being

a large omponent of the global limate,

to model its irulation is essential to ob-

taining a better understanding of the dra-

mati limati hanges whih either have o-

urred or might our. Finally, some the-

oretial studies require the use of models

in order to understand fundamental physial

proesses whih involve nonlinear dynamis

and/or omplex geometries, and whih are

beyond analytial approahes.

The �rst attempts to model the oean ir-

ulation were made in the middle of the 20th

entury, after the work of Ekman (1905) who

reognized the importane of the wind as the

major soure of mehanial foring. Sver-

drup (1947) derived a simple law that relates

the oean urrents to the url of the wind

frition. Stommel (1948) and Munk (1950)

derived analytial models of the wind in-

dued oean irulation in losed retangular

basins using simpli�ed dissipative laws. Both

the Stommel and Munk models a�ord simple

explanation of the westward intensi�ation

of oeani urrents, suh as observed for the

Gulf Stream or the Kuroshiwo. An impor-

tant threshold in omputer performanes was

reahed in the late sixties, and this allowed

for the �rst full prognosti three-dimensional

studies of the oean irulation (Bryan and

Cox, 1967; Bryan, 1969). These models were

driven by mehanial foring (the winds and

a bottom drag) and by uxes of salt and

heat exhanged with the atmosphere. They

ould take into aount the omplexity of

the geometry and the nonlinear nature of

the oeani urrents. Ideally, these models

should be able to �ll the gaps in the data

and give reasonable estimates of the oean

irulation. However, beause of their inher-

ent omplexity, the poor knowledge of nu-

merous physial proesses and problems with

the de�nition of oastlines, straits and sea-

mounts, they drift easily from any reason-

able state if no restoring terms are added to

the equations for temperature and sanility.

Thus, prognosti three-dimensional models

may sometimes look like expensive interpo-

lators and yield no very di�erent results than

simpler inverse models do. Nonetheless, they

have produed useful estimates of the role

of the oeans in the thermal global budget

and the importane of the so-alled onveyor

belt.

Our main onern is the representation of

irregular domains in numerial oean models,

and their inuene on the dynamis of the

urrents. Models, so far, have only rudely

represented these irregular boundaries, ei-

ther in the vertial (the topography) or in the

horizontal (the oastlines). Our objetive in

this thesis is to evaluate the auray of on-

ventional numerial methods in the presene

of irregular oastlines and to introdue more

aurate alternatives.

Furthermore, we suspet that irregular

oastlines have important but sometimes

under-estimated inuenes of the dynamis

of the urrents owing along them. The en-

ergetis of these urrents are ontrolled by

the transfer of energy to smaller sales by

nonlinear interations. These interations

are likely to take plae along the western

part of the oeani basins where the ur-

rents are the strongest. In partiular, as

the geostrophi balane (the main assump-

tion governing the dynamis of the urrents)

in these regions breaks down, we hint at

possible interations between the geostrophi

1
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and ageostrophi modes. We therefore fous

on models whih are simple enough to rep-

resent geostrophi-ageostrophi interations

on a large range of sales. A shallow water

model seems appropriate for these goals. The

dynamis are only two dimensional whih al-

lows for very high resolutions in the horizon-

tal diretions, as opposed to more omplex

three-dimensional models where the same

level of resolution would be too expensive.

In one partiular ontext, we introdue a

quasi-geostrophi (QG) model for ompari-

son. This partiular type of model repre-

sents only the geostrophi motions. Previ-

ous studies fousing on nonlinear interations

were usually done in very idealized and reg-

ular domains using QG models. Hene, we

hope to make an interesting ontribution by

onduting relatively simple experiments in-

volving idealized but still irregular oastlines

and somewhat more omplex dynamis om-

pared to QG models.

The problem of aurately representing

the geometry of the domain in oean mod-

els is divided in two sub-problems: repre-

senting the bottom boundary (the topogra-

phy) and representing the lateral boundaries

(the oastline). Topographial features (sills

or sea-mounts) are essential to the mixing

of waters of di�erent properties, origins and

depths, and, therefore, their inuene ex-

tends to the largest sales. Coastlines par-

tially enlose the oeani basins. Their pres-

ene is essential to the omprehension of the

oeani urrents (suh as the westward in-

tensi�ation of urrents). It was early re-

alized that a rude vertial representation

of the topography (z- or geopotential verti-

al oordinate) ould be detrimental to an

aurate modelling of the oean irulation.

In partiular, waters of di�erent properties

tend to mix over sills with dramati onse-

quenes for the global oean irulation if

the vertial disretization is too rude. To

remedy this problem, vertial terrain follow-

ing oordinates were proposed, despite var-

ious known limitations. However, the hor-

izontal disretization has not reeived the

same level of srutinity. Most of the modern

oeani models still rudely represent oast-

lines. A rude horizontal disretization has

several onsequenes. Straits may be under-

resolved and the assoiated exhange of wa-

ter modi�ed: The strait of Gilbratar on-

trols the Mediterranean salt input into the

Atlanti; the Bering strait ontrols the fresh-

water input between the Arti and the Pa-

i� and the Indonesian arhipelago is notori-

ous for being the loation of the so-alled re-

turn ow of the vast thermo-haline onveyor

belt whih irles the globe. A rude hori-

zontal representation has also retardation ef-

fets for fast oeani modes (Kelvin waves)

whih propagate along oastlines (Shwab

and Beletsky, 1998). For the wind-driven ir-

ulation, little is known about the inuene

of rude horizontal representations.

In order to study the inuene of the

hoie of the numerial method, we propose

to test several of them, and investigate whih

one best handles irregular oastlines. We

therefore propose to test di�erent staggerings

of the �nite di�erene (FD) method and sev-

eral �nite element (FE) formulations against

a spetral element method. The test-ases

we hoose are very idealized in order to fo-

us only on the dynamial aspets of two-

dimensional ows (no physial parameteri-

zations exept for onstant dissipative oeÆ-

ients) and range from simple linear and non-

linear test-ases in square domains, to linear

and non-linear test-ases in smoothly irreg-

ular domains. The �nite di�erene models

range from the onventional Arakawa C-grid

(preferentially used for regional studies |

e.g. Blek and Boundra, 1981; Blumderg and

Mellor, 1983), to the onventional Arakawa

B-grid (preferentially used for global stud-

ies as in Bryan-Cox derived models | e.g.

Bryan, 1969; Cox, 1984), to the unonven-

tional A-grid (Dietrih et al., 1993).

We hoose to use the FE method beause

it has the deisive harateristi of repre-

senting boundaries more eÆiently than the

more onventional FD method and beause

it presents variable resolution apabilities.

Oeanographers, espeially the tidal ommu-

nity use FE models to represent tidal inter-

ations and resonanes whih our at di�er-

ent sales, from oean basin to oastal in-

lets (Connor and Wang, 1974; Lynh and

Gray, 1979; Walters and Cheng, 1979). Some

of the modern FE models are derived from

the earlier models formulated by Lynh and

Werner (1987) and Le Provost et al. (1994).

Others used the QG approximation and pro-

posed a �nite element formulation of the vor-

tiity equation for the general oean iru-

lation (Fix, 1975; Dumas et al., 1982; My-

ers and Weaver, 1995); results were very en-

ouraging. Unfortunately, no general irula-
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tion model based on the primitive equations

(explained below) has been proposed based

on the FE method and we try to determine

the reasons for this relative failure. On the

other hand, the spetral element method (an

extension of the �nite element method) has

been used with a relative suess by Iskan-

darani et al. (1995). Their method is based

on quadrangular elements; instead, we fa-

vor the use of triangular elements whih of-

fer inreased geometrial exibility. Spei�-

ally, we propose to test a spetral element

model based on this disretization tehnique.

The apparent advantage of the spetral el-

ement method lies in the aepted advan-

tage of spetral methods (the auray and

the fast onvergene with inreasing resolu-

tion for regular problems) and the exibil-

ity of an irregular grid. However, as with

the spetral method, there is always the pos-

sibility that Gibbs osillations appear when

the �elds being approximated are too irreg-

ular or under-resolved (the lassial exam-

ple is the step-funtion). We try to solve

this problem by use of an adaptive method

whih inreases the resolution (the number of

triangles) in regions where the largest errors

in the solution are observed (to be de�ned

later). Finally, sine �nite element methods

are potentially more ostly than onventional

�nite di�erene methods due to the need for

more matrix inversions, the spetral element

method may be a good alternative beause

its enhaned auray (ompared to �nite el-

ements) is not severely o�set by an exessive

ost. In order to verify this statement, we

give an auray-to-ost funtion for all mod-

els.

Modelling the oean is very hallenging

due to the oexistene of many physial pro-

esses at various spatial and time sales, from

the lowest sales (salt intrusion and visous

boundary layers of a few entimeters), to sur-

fae waves indued by wind or wave break-

ings, tides, geostrophi eddies, to the general

oean irulation. Sine all these proesses

an interat with eah other, it is virtually

impossible to reprodue and isolate with a

high degree of realism any of these proesses.

Most often, approximations and parameteri-

zations are used to represent the small sale

(or sub-grid) phenomena and limit the ex-

pliit motions of the model to the sales of

interest. In this hierarhy of approximations,

the barotropi QG model represents the lead-

ing largest sale and lowest frequeny ap-

proximation. There is no vertial struture

and no horizontal divergent motions suh as

gravity waves. Then, somewhat more om-

plex is the shallow water model. The vari-

ables are the horizontal veloity, (u; v) and

the elevation of the free-surfae, �. It al-

lows for divergent motions but still does not

permit vertial struture. Layered models

are extended versions of shallow water mod-

els and allow for rude vertial (barolini)

variations. For more realisti vertial stru-

tures, the so-alled primitive equations are

used. They are based in the inompressible

Navier-Stokes equations and use the Boussi-

nesq and hydrostati assumptions. Further

improvement an be gained by using an non-

hydrostati model whih an represent the

small sale onvetion. However, the limita-

tion imposed by omputer performane �xes

the length sales and the physial proesses

whih an be expliitly resolved. Some fea-

tures, suh as synopti eddies, are very dif-

�ult to resolve in global irulation mod-

els. These eddies are of the order of 10 to

100 km and are relatively small ompared

to the basin sale (10,000 km). Nonethe-

less, some authors (Holland and Lin, 1975;

Treguier, 1992) stress the importane of rep-

resenting expliitly the role of the eddies in

the transfer of energy between the di�er-

ent sales and their positive inuene on the

(more realisti) mean �elds. These proesses

an not be perfetly mimiked by the alterna-

tive strategy of using eddy-parameterizations

and, therefore, this strategy is argued to be

awed (Lesieur, 1997). Moreover, these pa-

rameterizations use oeÆients diÆult to

adjust to real observations when these oeÆ-

ients are not simply \osmeti". Therefore,

a good general oean model should be eddy-

resolving. However, sine the required reso-

lution for a general irulation model of the

oean is too high (10 km at mid-latitudes),

models should have, at least, variable res-

olution apabilities, in the sense that they

should have apabilities to follow and resolve

isolated eddies or westward boundary ur-

rents, while the rest of the domain is dis-

retized at a oarser resolution.

It may be important to represent other

physial proesses. The Topex-Poseidon

satellite mission, for instane, renewed in-

terest in the surfae oean large sale a-

tivity: tides, Kelvin and Rossby waves and

synopti eddies whose signature were mea-

surable on the surfae elevation �eld of the
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oean. Hene, a good general or regional

oean model should also have a moving free-

surfae whih allows for fast barotropi grav-

ity waves. This was also pointed out by

studies of the vertial eddy-visosity over

the rough topography of the Atlanti ridge

(Polzin et al., 1997). The large values of the

eddy-visosity observed over the ridge, prob-

ably indued by external tides, imply that

the general irulation must interat with the

tides, i.e. the QG physis interats with the

large sale gravity waves (ageostrophi hori-

zontally divergent dynamis). From a the-

oretial point of view, it seems also more

and more neessary to inlude ageostrophi

motions in numerial models, even in the

extra-tropis. The diÆulty omes from ex-

plaining the asade of energy down to the

moleular visosity sale where the energy

an be dissipated. Indeed, the two dimen-

sional (and QG) dynamis tend to asade

the energy up to the Rhines arrest sale (50

to 200 km) in typial basins and not down.

Therefore, there is no lear mehanism that

asades down and dissipates the energy in

QG dynamis. This mehanism may ome

from the non-linear interations between the

geostrophi and ageostrophi modes. This

may be visible from spetral analysis (Stam-

mer, 1997) whih show no partiular ut-

o� frequenies or wave-numbers separating

geostrophi and ageostrophi modes

1

.

The presene of irregular oastlines may

also be important for the interations of the

geostrophi and ageostrophi modes. First,

beause it provides a foring soure at var-

ious wave numbers and, moreover, beause

the westward side of oean basins is the lo-

ation where the geostrophi approximation

is most likely to break down, i.e., where

the transfer of energy is most likely to o-

ur. These preeding arguments imply that

general irulation models should allow for

the interations between the geostrophi and

ageostrophi motions. The simplest system

that allows for suh interations is the shal-

low water equation system.

1

To be preise, the elevation slope (related to the

veloity) peaks at a wave-number whih ranges de-

pending on latitude between the Rhines sale and

the �rst barolini Rossby radius of deformation. It

is yet unlear how to interpret these results in terms

of separation of geostrophi and ageostrophi modes,

as the Rossby radius lies at the observational limit of

the instrument.

Also for physial reasons, even eddy-

resolving models need an expliit param-

eterization of dissipation. Although very

rude, this is usually done through an ex-

pliit eddy-visosity (Laplaian operator) pa-

rameterization. Suh a parameterization re-

quires an arbitrary hoie for the dynami-

al boundary ondition at the walls (a prob-

lem whih is exaerbated when higher or-

der dissipations are employed). We onsider

herein only two boundary onditions. One

is the free-slip boundary ondition and or-

responds to uids being free to slip along

lateral boundaries. There is some ambigu-

ity as to the preise de�nition of free-slip.

Pedlosky (1987, p. 183) takes the point of

view that it orresponds to there being no

visous ux of tangential momentum aross

the boundary (i.e., �[�v=�x + �u=�y℄ = 0

at the wall). We take a less stringent de�-

nition by simply foring the normal deriva-

tive of the tangential veloity to be zero (for

instane, �v=�x = 0 on a meridionally ori-

ented wall). The latter hoie is the one gen-

erally found in the literature. On straight

walls, the two de�nitions are equivalent, and

orrespond to vertial vortiity vanishing at

the wall. On urved boundaries, either de�-

nition mentioned above results in non-zero

relative vortiity

2

. This bears some dy-

namial onsequenes that we disuss below.

The seond boundary ondition is the so-

alled no-slip boundary ondition whih or-

responds to uids that do not slip along walls

(the tangential veloity is zero), and leads

to strong shear along walls. This bound-

ary ondition is onsidered to be the \real"

one beause it is the one observed in lab-

oratory experiments at mirosales. How-

ever, at the resolution used in modern oean

models (1 to 100 km), it is not lear whih,

if either, boundary ondition is appropriate.

The present trend in oean modelling is to

go towards higher Reynolds number (smaller

lateral visosity) and higher resolution along

with no-slip boundary onditions. But the

level of resolution is still very far from suf-

�ient to represent realisti visous bound-

ary layers, although inertial boundary layers

are de�nitely beoming more realisti. On

the other hand, authors experiened prob-

lems with the free-slip boundary ondition.

In an idealized square basin and barotropi

oean, it is observed that under single-gyre

wind foring and dereasing eddy-visosity,

2

Pedlosky's de�nition an lead to larger values of

the relative vortiity.
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the oeani urrents tend to jump to unre-

alistily high values with no signs of tran-

sient eddies, whatever the resolution of the

model is. Hene, the free-slip boundary on-

dition prevents the transient ativity whih

usually allows for reasonable mean urrents

by transporting the exess of negative vor-

tiity from the interior, through the inertial

layer to the walls, where it is dissipated (Ped-

losky, 1996). Using a barotropi QG approx-

imation, Dengg (1992) showed that free-slip

ows tend not to separate from a ape om-

pared to the lear separation observed with

no-slip ows, whatever the value of the wind

foring. For all of these reasons, it seems

safer to use the no-slip boundary ondition,

even if it requires unrealistily large visos-

ity values in order to resolve the boundary

visous sub-layer. Nonetheless, these studies

fail to realize some important issues. The ab-

sene of transients and separation, under the

free-slip boundary ondition, is onneted to

the fat that most of those models fail to pro-

due relative vortiity at the walls. This is

beause the relative vortiity at the bound-

ary is spei�ed to be zero for reasons of sim-

pliity. Therefore, those studies fail to note

that, even under free-slip, ows an produe

relative vortiity simply beause of the oast-

line urvature. Hene, absene of transients

in a square basin is due to the idealized

straight walls. If the walls were urved (or,

in more general sense, irregular, as they are

in nature) , there is a hane that transients

would appear and play the important role of

transporting exess of negative vortiity from

the interior to the walls. For the same reason,

separation of the oeani urrents around a

ape an our beause the ape is round

and an produe the neessary vortiity re-

quired for separation. Of ourse, due to their

fratal nature, the urvature of the oastline

depends on the sampling resolution hosen

to represent the oastline. Therefore, the

knowledge about oastline urvature is sub-

jetive. This, in itself, would be a good rea-

son for not onsidering the free-slip bound-

ary ondition for pratial oean modelling.

Nonetheless, we would like to revisit the de-

bate between free-slip and no-slip and inves-

tigate if, at least from a theoretial point of

view (when the urvature is known), use of

free-slip is permissible. For this reason, we

disard all barolini proesses and only on-

sider an idealized model of the oean, the so-

alled shallow water model, in presene of ir-

regular boundaries and driven solely by wind

frition. The desription of both geostrophi

and ageostrophi motions in this model al-

lows for observations of the interations be-

tween the two kinds of motions whih may

be important, espeially in presene of ir-

regular boundaries. In terms of physis and

geometrial representations, our study on-

trasts with and should be an improvement

over earlier theoretial studies based on the

QG approximation and retangular basins.

The thesis is organized as follows. In

Chapter 2, we present the di�erent numerial

methods and, in Chapter 3, we test them for

simple test-ases in order to understand the

e�etive trunation order and ost of these

methods in presene of irregular domains. In

Chapter 4, we further analyze the issue of

disretization in FD models and, in parti-

ular, how it relates to vortiity budgets of

the whole basin. In Chapter 5, we inves-

tigate the inertial run-away problem under

free-slip boundary onditions in irregular do-

mains. Conlusions are presented in Chap-

ter 6.



Chapter 2

Presentation of the Numerial

Methods

In this hapter, we review the three nu-

merial methods and the di�erent models

we will use in this thesis. In partiular,

we stress the limitations of eah as it re-

lates to the disretization of irregular do-

mains. In the ase of the spetral element

method, we ontribute to the development

of the method by proposing our own adap-

tive tehnique. Furthermore, we present our

own implementation of urved spetral ele-

ments. Although urved elements are quite

natural to the spetral element method, we

found very little information in the literature

with respet to their implementation.

The idealized equations we propose to

solve are the shallow water (SW) equations.

These equations are grossly simpli�ed om-

pared to the primitive equations. Nonethe-

less, the dynamial proesses involved in the

formation of wind-driven irulations and

the interations with irregular oastlines are

similar enough that we an restrit ourselves

to these equations as an introdutory study.

The equations are

�

t

u+ u �ru+ fk� u+ gr� =

�

h

+ �r

2

u (2.1)

�

t

� +r � (uh) = 0 , (2.2)

where symbols are de�ned in Table 1. These

equations orrespond to a Boussinesq, hydro-

stati, homogeneous oean in whih we as-

sume that there is no vertial struture, re-

duing the real three-dimensional (3D) prob-

lem to a simple two-dimensional (2D) prob-

lem. One remark onerns the treatment of

the gravity waves in these equations. The

natural speed of barotropi gravity waves is

p

gH where g = 9:81m s

�2

is the aeleration

due to gravity and H is the typial oeani

depth. Sine a reasonable value for H is

about 4000 m, the phase speed for barotropi

gravity waves is about 200 m/s. In order

to use reasonable time-steps and be able to

perform long time simulations, these modes

have to be slowed down by using a \redued"

gravity. This approah is not inonsistent

with the atual physis of the oean. In

fat, in the presene of a thermoline and a

deep layer at rest below the thermoline, the

SW equations with redued gravity repre-

sent, in some sense, the �rst barolini mode

dynamis, i.e., the dynamis of the upper

layer. Indeed, this upper layer happens to

be the loation of the most intense dynam-

ial events. The redued gravity is de�ned

as g

0

= g�� =�

0

where �� is the jump in

density through the pynoline and �

0

the

average value for the density of the oean.

For example, the Kelvin waves observed in

the equatorial Pai� and along the western

Amerian oast have phase speed of 2-3 m/s

(Boulanger and Fu, 1996; Ramp et al., 1997),

lose to the phase speed of 3.16 m/s obtained

in a SW redued gravity model where the re-

dued gravity is �xed at 10

�2

m s

�2

and the

depth above the thermoline is taken to be

1000 m. Hene, these equations are onsis-

tent with a �rst order approximation of the

physial proesses involved in the layer above

the thermoline.

6
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(x; y; z) the oordinate system (east-north-upward)

u = (u; v; 0) horizontal veloity vertially averaged

� elevation of the water surfae taken from rest

h

b

height of the water olumn above the oeani oor at rest

k = (0; 0; 1) unit vetor normal to the horizontal plane pointing upward

r gradient operator

h = � + h

b

uid layer thikness

U = hu vertially averaged horizontal ux of mass

q = (� + f)=h potential vortiity

� = k � (r� u) relative vortiity

f = f

0

+ �y Coriolis parameter varying with latitude

B = g� +

1

2

u � u Bernoulli funtion

� dynami eddy visosity

g

0

= 0:01 m.s

�2

redued gravity aeleration

f

0

= 1:0285 10

�4

s

�1

de�ned at 45

0

N deg.

� = 1:607 10

�11

m

�1

s

�1

de�ned at 45

0

N deg.

L

Rossby

= 31:22 km the Rossby radius

L

x

, L

y

the lengths of the basin (=1000 km when unspei�ed)

� = (�

x

; �

y

)

wind stress in m

2

s

�2

. For the single gyre wind

foring, �

x

= �10

�4

sin(� y=L

y

) and �

y

= 0.


 basin domain

Æ
 boundary of the basin domain

n normal vetor oriented outward the domain

C = u �ru+ f k� u Advetion-Coriolis terms

Table 2.1: List of variables in (2.1{2.2)
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2.1 The Time Disretization

Several time-stepping shemes are onsidered

and used in onjuntion with one of the spa-

tial disretization tehniques proposed in the

following setions. For larity, we review the

time-stepping tehniques separately in this

setion. Let us onsider the equation

�u

�t

= F (u) . (2.3)

The time-operator an be �nite-di�erened

using a Taylor's series expansion trunated

after the �rst term:

�u

�t

(t

n

) =

u

n+1

� u

n

�t

+O(�t) . (2.4)

The simplest time disretization onsists

then of integrating (2.3) given the previ-

ous time-step �elds. This formulation orre-

sponds to the so-alled expliit forward Euler

sheme and is only �rst order aurate

u

n+1

= u

n

+�t F (u

n

) . (2.5)

This formulation is usually reommended for

the integration of the dissipative or frition

terms, beause no large preision is required

in time, as long as the small sale numeri-

al noise are damped (and the sheme is sta-

ble). For ensuring stability, a ondition on

the magnitude of the time step, �t, applies.

For instane, when F (u) = �r

2

u (a visous

dissipation term), this ondition is

2��t

�x

2

< 1 . (2.6)

Unfortunately, the forward Euler sheme is

not neutral for various problems, in the sense

that some quantities suh as mass, momen-

tum or energy are not onserved but may

deay or grow as the simulation is advaned

in time. When these quantities grow with

time, the model is of ourse unstable. This

happens, for instane, when F (u) represents

the Coriolis terms. In order to better on-

serve ertain quantities, a better sheme is

the expliit leapfrog sheme

u

n+1

= u

n�1

+ 2�t F (u

n

) , (2.7)

based on a seond order trunation

�u

�t

(t

n

) =

u

n+1

� u

n�1

�t

+O(�t

2

) . (2.8)

The leapfrog sheme is thus entered in time.

As the Euler sheme, this sheme is restrited

to ertain onditions for stability. For in-

stane, if F (u) represents an advetion or a

wave propagation problem and using the def-

inition that the Courant number is given by

C =

�t

�x

(2.9)

where  is a phase speed or an advetion

veloity, the CFL (Courant-Friedrih-Levy)

ondition implies that

C < 1 (2.10)

for stability. The Leapfrog sheme is neu-

tral and onditionally stable for problems

involving, for instane, Coriolis or nonlin-

ear advetion terms, and is unstable for

dissipative terms. Moreover, the leapfrog

sheme requires a time-�ltering, beause

the non-linearities and round-o� errors lead

to a deoupling of the solution between

even and odd time steps. In order to

avoid restrition of time-step magnitude,

other time-integrations tehniques were in-

trodued. They inlude impliit and semi-

impliit shemes. Nonetheless, these shemes

have to respet a ertain ondition on the

Courant number for ensuring a good au-

ray. The semi-impliit

1

sheme onsists of

u

n+1

= u

n

+�t F (u

n+1=2

) , (2.11)

where F (u

n+1=2

) = 1=2(F (u

n+1

) + F (u

n

))

and the fully-impliit sheme (also alled the

bakward Euler sheme) is implemented as

u

n+1

= u

n

+�t F (u

n+1

) . (2.12)

The advantage of the semi-impliit treat-

ment is that the time-operator is entered

and seond-order. For the Coriolis terms,

the fully-impliit is dissipative, and the semi-

impliit (entered in time) is neutral. For

the treatment of the fast linear gravity waves

present in the shallow water equations, the

advantage of using a semi-impliit or fully-

impliit tehnique is that there is no restri-

tion on time-steps (the domain of stability of

the models is extended) but at the expense of

1

As termed in the atmospheri ommunity in op-

position to the full impliit formulation but also

alled the trapezoidal rule or the Crank-Niolson

sheme in other �elds.
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solving a matrix problem due to the oupling

of the variables through partial derivatives.

The disadvantage of these two tehniques is

that some physial proesses, suh as gravity

waves, are slowed down if a too large time-

step is used (i.e., C > 1). This may have

onsequenes for the interations of impor-

tant dynamial proesses (the geostrophi

and ageostrophi modes) and, therefore, this

may lead to a less aurate representation

of the asade of energy (as mentioned in

Bartello and Thomas, 1996).

The non-linear advetive terms, u � ru,

require a speial treatment. When we on-

sider the omputation of u

n+1

, they an be

omputed using the previous time step as

u

n

� ru

n

. Then, if the time-operator is

entered and leapfrog, the non-linear terms

are neutrally treated, otherwise, they are

o�-entered for the other time-integration

shemes and may be unstable or dissipa-

tive depending on the time integration teh-

niques. The non-linear terms an be treated

impliitly as u

n

�ru

n+1

or fully impliit us-

ing an iterative proedure. Another way is to

use an expliit 4th order Adams-Bashforth

formulation

u

n+1

= u

n

+

�t

12

�

23 F (u

n

)� 16 F (u

n�1

) + 5 F (u

n�2

)

�

.

(2.13)

The sheme is o�-entered. It requires saving

�elds from several previous time-steps and

the time-step is limited by a CFL ondition.

Use of Runge-Kutta tehniques is also possi-

ble, the fourth order one having the advan-

tage of good quadrati onserving properties,

suh as for the energy. But Runge-Kutta

tehniques require sub-step time integrations

as in this 4th order example:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

h

1

= F (u

n

; t

n

)

h

2

= F (u

n

+�t h

1

=2; t

n

+�t=2)

h

3

= F (u

n

+�t h

2

=2; t

n

+�t=2)

h

4

= F (u

n

+�t h

3

; t

n

+�t)

u

n+1

= u

n

+�t(h

1

+ 2h

2

+ 2h

3

+ h

4

)=6 .

(2.14)

The Runge-Kutta formulations are neutral

for all phenomena, very aurate, and require

a CFL ondition. Adams-Bashforth formula-

tions are usually reommended for non-linear

integrations, but have the pratial disad-

vantage of requiring smaller time-steps than

equivalent order Runge-Kutta integrations,

to the point that there is no de�nite advan-

tage of one tehnique over the other

2

. Here-

after, we tend to use the 4th order Runge

Kutta integration beause of its auray

and beause it does not require any time �l-

tering.

A ompletely di�erent time-stepping ap-

proah onsists of using the Lagrangian

framework (the grid follows the partiles)

instead of the Eulerian framework impli-

itly assumed previously (the grid is �xed

in time). The Lagrangian time-integration

takes advantage of the fat that the dynam-

ial equations are simpli�ed when written in

a Lagrangian form

D

t

u+ fk� u+ gr� =

�

h

+ �r

2

u (2.15)

D

t

lnh+r � u = 0 , (2.16)

where D

t

is the Lagrangian or total time

derivative. This is another way of saying that

the partile trajetory is the harateristi

line for the advetive-only problem. Hene,

the problemati non-linear terms appearing

in the equations do not appear expliitly (ex-

ept for the term in the mass balane). The

main diÆulty is in following the partiles

that form the ow, and espeially expressing

the right-hand-side terms. In order to avoid

this problem, the so-alled semi-Lagrangian

formulation was developed whih takes ad-

vantage of both the Lagrangian and Eule-

rian frameworks (see Staniforth and Côt�e,

1991, for a review). The right-hand-side

terms are disretized on the Eulerian frame-

work (in whih derivatives are easy to ex-

press) and the time-derivative is treated on

the Lagrangian framework. The advantage

is in keeping a �xed grid or domain in time.

An interpolation proedure is used in or-

der to transfer information from the Eule-

rian grid to the Lagrangian grid (the par-

tile trajetories). As the equations are

time-stepped along the advetive harater-

isti lines (the partile trajetories), there

are no limitations imposed by numerial sta-

bility on the magnitude of the time-step

2

This was observed for a single gyre wind-driven

experiment in a square domain (the one used in Se-

tion 3.4) using the seond order C-grid FD model

given in Setion 2.2.2.
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due to the advetive terms. Therefore, the

method is e�etive in advetion dominated

ows. To be preise, aording to Bartello

and Thomas (1996), the method is e�e-

tive only if the spetrum of energy is very

steep (not too muh energy at the small-

est sales). Moreover, a semi-impliit or

fully-impliit method an be added to the

semi-Lagrangian treatment of the equations

(Robert, 1981). Thus the model has virtu-

ally no limitations due to stability regard-

ing time-step magnitude with respet to any

physial proess desribed by the momentum

equations. However, the presene of orogra-

phy is troublesome in semi-Lagrangian meth-

ods, e�etively reduing the allowable time-

step (Rithie and Tanguay, 1996). The ad-

vantage of using semi-Lagrangian methods in

an oean where the topography is steep is,

hene, unlear.

Sine the equations are iterated in time,

the interpolation an be very damaging to

the onservation properties of the ow (mass

or energy). That is why modelers have to

use high order interpolation shemes (u-

bi or more). Nonetheless, the interpolation

tehnique is usually responsible for a large

numerial dissipation, diÆult to minimize.

On the other hand, these models an run

without expliit eddy-visosity or di�usivity.

Proponents of the semi-Lagrangian method

never fail to mention that their models run

without expliit numerial visosity, whereas

opponents note that semi-Lagrangian mod-

els o�er no ontrol over this impliit vis-

osity. Another disadvantage of the semi-

Lagrangian tehnique when oupled to the

semi-impliit or impliit method is related to

the same argument against the semi-impliit

and impliit methods. Namely, that too

large a time-step distorts the physial pro-

esses and misrepresents the real asade of

energy.

2.2 Finite Di�erene Models

2.2.1 Introdution

The order of a �nite-di�erene (FD) model

is given by a Taylor series expansion of the

numerial formulation. For instane, the �rst

derivative of � given by a three point (equally

spaed) formula

��

�x

(x

i

) =

�

i+1

� �

i�1

2�x

+O(�x

2

) (2.17)

ensures a seond order auray. This means

that if resolution is doubled, auray in-

reases by a fator of 4. Higher order formu-

lations are possible (Dietrih et al., 1993),

but most FD oean models use seond or-

der shemes. In more than one dimen-

sional problems, the best auray is ob-

tained by using Cartesian-like grids (this in-

ludes urvilinear grids). And if there is

any strething of the grid, a hange of less

than 5% to 10% in size is usually reom-

mended between two neighboring omputa-

tional ells.

When �nite di�erene models make use of

Cartesian-like grids, a omplex oastline is

represented by a series of arti�ial \steps".

More preisely, where the orientation of the

boundary does not orrespond to that of the

grid, disretization of the boundary intro-

dues a series of arti�ial \steps" along the

oast (see Fig.2.1). Curvilinear models exist

that tend to follow the oastline, but they

usually fail as soon as the omplexity of the

oastline is too large (too many apes and

bays). A dramati example is the desription

of straits when only few points are available

(Fig.2.2). In that situation, the strait width

must take values in a set of disrete numbers

at the prie of misrepresenting the width and

therefore the exhange of water masses. We

are onerned with the issue of oastline rep-

resentation in FD models and, partiularly,

we want to investigate the auray of FD

models in presene of step-like lateral walls.

These steps an be viewed as singularities

(tips of land) around whih the oeani ur-

rents ow. A question therefore arises on-

erning the inuene of resolution versus the

inuene of steps; the smaller the grid ell,

the larger the number of steps along a oast-

line. It is then not lear whether the solution

beomes more aurate (due to higher prei-

sion in the interior) or less aurate (due to

an inreased number of singularities or steps

along the boundaries). If the model solution

is less aurate with inreasing resolution in

presene of steps means that the model for-

mulation beomes inonsistent in presene of

steps. This may our beause FD models

are made to be onsistent in open or losed
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retangular domains but are not neessar-

ily in the more general ase of irregular do-

mains. In partiular, we raise the problem

of the omputation of the advetive and vis-

ous terms in presene of steps. On the other

hand, onsisteny should apply to the linear

invisid SW models.

Model Boundary

Real Boundary

Discretized strait

Real strait

Figure 2.2: E�et of a poor resolution on the ge-

ometry of a strait. This one is widened by about

100%. Straits are of great importane beause

they ontrol the exhange of water between two

oean basins.

The same problem arises in the vertial

disretization of the topography in three-

dimensional FD models of the oean. In

models of Bryan-Cox type (Bryan, 1969)

based on the primitive equations, the vertial

axis is disretized at various onstant depths.

They are alled leveled or z-oordinate mod-

els. In these models, the topography follows

a step-like representation and therefore they

are prone to problems similar to the ones

mentioned above. For instane, the equiv-

alent diÆulty in z-oordinate models to the

desription of straits is the desription of

sills. The depth of sills or other important

topographial features has to be taken from

a set of disrete depths. It was early real-

ized that this step-like representation had

detrimental e�ets on the overall irula-

tion. For instane, z-oordinate models have

meridional irulations whih are known to

be sensitive to the details of how the bot-

tom boundary is represented. The issue is

that they do not aurately advet denser

waters along slopes and overestimate diapy-

nal mixing (Gerdes, 1993; Roberts et al.,

1996; Roberts and Wood, 1997). Di�erent

strategies were proposed to irumvent the

problem. The �rst strategy was to hange

the vertial oordinate, z, to a following ter-

rain oordinate, � (Phillips, 1957; Blumberg

and Mellor, 1983). But �-oordinate mod-

els enounter other known limitations, suh

as pressure gradient errors and arti�ial di-

apynal mixing. A seond strategy is to use a

layered (or �-oordinate) model (Blek, 1978;

Blek and Boudra, 1981). Roberts et al.

(1996) ompared the behavior of the sim-

ulated North Atlanti in a z-model and in

an isopynal model (�-model). In partiu-

lar, they noted that the z-model has more

trouble in representing a realisti outow

from the Greenland basin (GIN). Roberts

and Wood (1997) extended the study by sys-

tematially studying the e�et of modifying

the topography of the sill at the outow of

GIN and noted the high sensitivity of the

model. The same observation was made by

Winton (1997) in a more idealized geome-

try of the North Atlanti. Winton et al.

(1998) �nally demonstrated that it is a res-

olution problem. When the resolution was

high enough to resolve the bottom boundary

layer and to resolve the slope, the ow is re-

alisti enough. However, the required resolu-

tion is unrealisti even for modern z-models;

therefore, they reommended the use of ex-

pliit bottom boundary layer models or the

use of isopynal models (although those ones

have also their own limitations, namely re-

lated to the isopynal layers interseting the

topography or the surfae.) From a di�er-

ent perspetive, Hirst and MDougall (1996)

noted that, in oarse resolution z-models,

the Gent and MWilliams (1990) turbulene

sheme remarkably enhanes the onserva-

tion of water properties along topographi-

al slopes. Another approah was proposed

by Adroft et al. (1997). They showed in-

teresting use of \shaved" ells in z-models.

The topography is then pieewise linear, in-

stead of being pieewise onstant as in usual

z-models.

All these diÆulties in representing ows

along sloping topography should warn us of

possible problems for the horizontal irula-

tion in the presene of step-like oastlines.

Using a shallow water model, Shwab and

Beletsky (1998) found that a Kelvin wave

moving along a oastline is sensitive to the

presene of steps. The steps have mainly a

retardation e�et on the wave, the e�et di-

minishing with higher resolution. These re-

sults are reprodued in Figure 2.3 using the

C-grid model of Setion 2.2.2. Four grids

in total were used: two grids with no rota-

tion of the basin showing no step along the

boundaries at 10 and 5 km resolution and

two grids with a 30 � o rotation of the basin
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Real Boundary

Model Boundary

Figure 2.1: E�et of the rotation on the disretization of a square domain. When the sides are no

more aligned with the disretization axis, step-like features our along the walls.

relative to the disretization axes showing

steps along the walls at also 10 and 5 km

resolution. That higher resolution dereases

the retardation e�et is onsistent with the

idea that Kelvin waves should not be sensi-

tive to oastline details, at sales small om-

pared to the Rossby radius of deformation.

In Figure 2.3, for the highest resolution runs

(5 km), the retardation e�et is still no-

tieable but it is muh weaker ompared to

the runs at 10 km resolution. Sine the ra-

dius of deformation is 31 km in these runs,

these results imply that we should resolve

the Rossby radius with about ten points for

a seond order formulation. This retarda-

tion e�et was also noted in irular lakes

by Beletsky et al. (1997) for di�erent kinds

of staggering of the grid and vertial repre-

sentations. One onsequene for modelling

the oean is that the fast modes of an oean

basin (the Kelvin modes) will be misrepre-

sented, espeially if the model resolution is

oarse. Therefore, transient responses of the

oean, suh as the El-Ni~no Kelvin wave along

the Western Ameria may be retarded, whih

may have onsequenes on the period of o-

urrenes of El-Ni~no events aording to the

delayed osillator theory (Shopf and Suarez,

1988). For instane, in the study of Soraes

et al. (1999), there are only two points to

represent the Rossby radius of deformation

at 20

o

North. This means that their results

are questionable onerning the ux and the

timing of Kelvin waves leaving the equator

and going poleward.

2.2.2 The Three Staggerings Used

To ensure stability in primitive variable or

shallow water models, the variables are usu-

ally staggered in spae, in the sense that

the disrete loation of the di�erent vari-

ables may di�er. Several standard staggering

tehniques are used in oean modelling: the

non-staggered A-grid (Dietrih et al., 1993),

the B-grid (Bryan, 1969; Cox, 1984) or the

C-grid (Blek and Boudra, 1981; Blumberg

and Mellor, 1983), as illustrated in Fig. 2.4.

The A-grid leads to spurious modes of os-

illation, fed by non-linear interations and

round-o� errors. These spurious modes are

ultimately unstable, but the A-grid an be

stabilized if higher order formulations are

used. The B-grid has better dispersion errors

at oarse resolution for propagating plane-

tary or Rossby waves than C-grid, and does

worse for pure gravity waves (Batteen and

Han, 1981).

FD models an be formulated to on-

serve energy and/or enstrophy (Arakawa,

1966; Sadourny, 1975; Abramopoulos, 1988;

Arakawa and Hsu, 1990; H�olm, 1996). For

instane, it is relatively easy to formulate

an A-grid energy onserving model, from

the point of view of the �nite volume (FV)

method. But onserving the energy exatly

only retards the ourrene of spurious nu-

merial noise (this model is detailed in Ap-

pendix A). If the model was also enstrophy

onserving (whih, aording to Abramopou-

los, 1988, is ahievable but very expensive),

the ourrene of spurious numerial noise

would be even more diÆult and hene, the

model would be stabilized.
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a b

 d

Figure 2.3: Elevation �eld for the Kelvin retardation problem in presene of steps along the walls

at two di�erent resolutions. � represents the rotation angle of the grid relative to the disretization

axes. a, 10 km, � = 0; b, 10 km, � = 30

o

; , 5 km, � = 0; d, 5 km, � = 30

o

. The dashed line is the

-0.01 m ontour, the solid lines are ontours from 0.1 to 1.0 m with an inrement of 0.1 m.
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A B

C

Figure 2.4: The three major horizontal stagger-

ings for the primitive equations. Left the A-grid,

enter the B-grid, right the C-grid. Veloities

omponents are loated by the arrows, the pres-

sure or elevation point is loated by a grey disk.

The C-grid Formulation

The C-grid derived models, suh as the

popular POM family of models developed

from Blumberg and Mellor (1983), tend to

be used preferentially for high-resolution re-

gional studies. The C-grid FD model used in

this thesis is the one formulated by Sadourny

(1975). This model is enstrophy onserving.

The nonlinear terms are split into a gradi-

ent term and a rotational term. To simplify

the following disussion, we leave the time

derivative being ontinuous. Using standart

notation, the disretized shallow water equa-

tions are

�

t

u� q

y

V

x

y

+D

�

x

B =

�

x

h

x

+ F

x

(2.18)

�

t

v + q

x

U

x

y

+D

�

y

B =

�

y

h

y

+ F

y

(2.19)

�

t

� +D

+

x

U +D

+

y

V = 0 . (2.20)

The disretized potential vortiity is given by

q = (f + �)=h

x

y

where � = D

�

x

v � D

�

y

u is

the relative vortiity. The disretized mass

uxes are given by U = uh

x

, V = vh

y

,

the disretized Bernouilli funtion is given by

B = g�+

1

2

(u

2

x

+v

2

y

) and F

x

and F

y

are the

visous fores. The o�-entered di�erening

operators in the x diretion are de�ned by

D

�

x

� =

�

ij

� �

i�1;j

�x

,D

+

x

� =

�

i+1;j

� �

ij

�x

;

and the averaging operator de�ned by �

x

is a

double point average =

1

2

(�

ij

+ �

i�1;j

). Sim-

ilar de�nitions apply along the y diretion.

(2.18), (2.19) and (2.20) ensure a seond or-

der auray to the omputation of the ve-

loity and elevation �elds. The kinemati

boundary ondition is no normal ow and the

dynami boundary ondition is free-slip, un-

less otherwise spei�ed. The C-grid model,

in whih the non-linear terms have been split

into a rotational part and a gradient part,

requires that vortiity be spei�ed at bound-

ary points. We set the relative vortiity to

zero along the model boundary, whih is on-

sistent with the free-slip boundary ondition

along straight walls.

The B-grid

The B-grid is employed in the popular MOM

family of oean models. The MOM model

is a z-model and was developed from Bryan

and Cox (1967) and Bryan (1969) and fol-

lowing investigators. The B-staggering suits

more naturally the no-slip boundary ondi-

tion, sine the veloity points are loated at

the orners of the omputational ell. Unlike

the C-grid, there are no ambiguities in the

way the dynamial boundary ondition is im-

posed at tips of the ontinents. The B-grid

is also well known for having a better disper-

sion relationship for Rossby waves at very

oarse resolution than does the C-grid (Bat-

teen and Han, 1981). This makes this stag-

gering tehnique more suitable for oarsely-

resolved global limate studies. However, we

are interested in how this on�guration be-

haves in the presene of steps along the walls.

From Cox (1979), it appears that the B-grid

model under the no-slip boundary ondition,

just as the C-grid (Adroft and Marshall,

1998), is not very sensitive to the presene

of lateral steps, therefore, we prefer to fous

on the behavior of the B-grid model with a

free-slip boundary ondition.

On the B-grid, the disretized shallow wa-
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ter equations beome

�

t

u+ uD

o

x

u+ vD

o

y

u

�fv + g D

�

x

�

y

=

�

x

h

x

y

+ F

x

(2.21)

�

t

v + uD

o

x

v + vD

o

y

v

+fu+ g D

�

y

�

x

=

�

y

h

x

y

+ F

y

(2.22)

�

t

� +D

+

x

U

y

+D

+

y

V

x

= 0 (2.23)

where U = uh

x

y

, V = vh

x

y

. The di�eren-

ing operator D

o

x

(and D

o

y

in the similar way)

are de�ned by

D

o

x

� =

�

i+1;j

� �

i�1;j

2�x

.

Eq. (2.21) and (2.23) ensure a seond or-

der auray to the numerial solution. The

diÆulty when applying the free-slip bound-

ary ondition to a B-grid model is that it

requires a prognosti equation for the velo-

ity omponent tangential to the wall (in the

more general situation of a irregular geom-

etry, the B-grid would require equations for

veloity nodes at tips of land-ells). There-

fore we use,

�

t

u

s

+ u

s

D

o

s

u

s

+ g D

�

s

�

�

=

�

x

h

�

s

+F

s

(2.24)

where s represents the tangential diretion,

and �

�

, the elevation point along the wall

at half a point from the onsidered veloity

node.

The A-grid

The argument behind using an A-grid on-

�guration is that the C-grid presents the dis-

advantage of separate loations for u and

v-omponents of the veloity. This means

that, at oarse resolution, the trunation er-

rors in the omputation of the Coriolis terms

an be fairly large. Aording to Adroft

et al. (1998), these errors trigger numerial

noise when the Rossby radius is not well re-

solved. From a programming point of view,

having all the variables loated at the same

points makes everything easier (physial pa-

rameterizations, onservative FV formula-

tion, graphi output, ...). The A-grid ar-

rangement of the variables is known to be an

unstable seond order formulation. Nonethe-

less, it is possible to run an A-grid model if

all the terms are aurate at fourth order. A

high-order method is ost e�etive in terms

of auray (Sanderson, 1998), as long as the

physial proesses are resolved and the spe-

trum of the resolved �elds is steep enough.

Dietrih et al. (1993), hereafter D93, de-

veloped suh a model. The model is three-

dimensional and uses a no-slip boundary on-

dition. We modify the model to represent the

shallow water equations, keeping the fourth

order formulation for all the terms (exept

the di�usion), and we inorporate the free-

slip boundary ondition. All the equations

are prognosti and integrated expliitly in

time using a 4th order Runge-Kutta sheme.

On an A-grid and using the same notation,

the shallow water equations lead to

�

t

u+ uD

4;x

u+ vD

4;y

u

�fv + g D

4;x

� =

�

x

h

+ F

x

(2.25)

�

t

v + uD

4;x

v + vD

4;y

v

+fu+ g D

4;y

� =

�

y

h

+ F

y

(2.26)

�

t

� +D

4;x

(uh) +D

4;y

(vh) = 0 (2.27)

The di�erening operators, D

4;x

and D

4;y

,

are fourth order operators. Equations 2.25{

2.27 ensure a fourth order auray to the nu-

merial solution, exept for the visous terms

F

x

and F

y

, whih remain seond order. The

diÆulty with the A-grid at fourth order is

to retain the fourth order right to the wall.

This is possible only if o�-entered di�eren-

tiation formulae and interpolation are used.

If this is not done, the model tends to be un-

stable with free-slip boundary onditions (as

demonstrated in the next hapter.)

2.3 Finite Element Models

2.3.1 Introdution

In this setion, we present several �nite ele-

ment (FE) models, all based on triangular el-

ements. The development of the FE method

was ontiguous to the development of om-

puters in the early 60s and 70s. By the end

of 70s, they were well established. They be-

ame partiularly popular in engineering for
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the omputation of stresses over strutures,

and somewhat popular in uid mehanis

and eletriity. In all ases, they were and

are still used beause of the great exibility

they o�er in term of geometrial representa-

tion, sometimes despite the ost or the lak

of stability of the method. In strutural me-

hanis, they have the deisive advantage of

being able to follow the deformation of the

mesh due to stress (Lagrangian time formula-

tion), making the methods quite \natural" to

this �eld. In eletriity, the absene of non-

linear terms in most appliations render the

method reasonably suessful. But in uid

mehanis, the method has always su�ered

from a lak of overall stability, from a lak of

auray in the omputation of the advetive

terms and from a very large ost, to the point

that most ommerial models used for en-

gineering appliations preferentially use the

�nite volume (FV) method along with near

regular meshes (.f., IDEAS, Star-CD, ...).

The disadvantage of the FV methods is that

they are usually of low order and that they

require near regular meshes to ensure good

performanes. This means that they are not

very suitable to model the oean.

The problem of stability in FE meth-

ods in uid mehanis was early analized

by Ladyzhenskaya (1969), Babouska (1971)

and Brezzi (1974), who gave their names to

the so-alled Ladyzhenskaya, Babouska and

Brezzi (LBB) stability ondition. Their work

fouses on the Stokes equations and they

demonstrated the need, in uid mehanis

FE methods, for using di�erent basis fun-

tions for the veloity and pressure. This was

equivalent to staggering the grid in spae, as

was done for the FD methods. Furthermore,

not any ombination of basis funtions satis-

�es the LBB ondition (Fortin and Fortin,

1985; Pierre, 1988; Idelsohn et al., 1995;

Le Roux et al., 1998). Arnold et al. (1984)

and Fortin and Fortin (1985) emphasized

that one simple way to stabilize equal-order

shemes is to add the so-alled bubble fun-

tion, and that this method does not lead ne-

essarily to an additional ost, thanks to stati

ondensation tehniques (some easy manual

Gaussian elimination before solving numer-

ially the matrix problem). But, sine, a-

ording to Pierre (1988), these methods are

equivalent to adding a penalty term in the

uid equations, they may be over-dissipative

in the ontext of unsteady ows and the more

general Navier-Stokes equations.

Mainly, the LBB ondition omes down

to inreasing the order (or the number of

degrees of freedom) of the basis funtions

for the veloity ompared to the basis fun-

tion for the pressure. However, one unre-

solved issue related to the LBB ondition is

its relevane for the shallow water equations.

The three shallow water equations are sim-

ilar enough that they an be generalized to

one vetor equation:

�V

�t

+

�F

�x

+

�G

�y

= H (2.28)

where V = (uh; vh; h)

t

, F = (uuh +

gh

2

=2; uvh; uh)

t

, G = (uvh; vvh+gh

2

=2; vh)

t

and H inludes the Coriolis, dissipation and

foring terms. Therefore, there is no intuitive

reason for lowering the order for one variable

ompared to the others. The only loss of sim-

ilarity between these equations omes from

the boundary onditions whih only apply to

the veloity. This is however a slight loss of

similarity whih only applies to the elements

sharing a fae or a vertex with the bound-

ary. Hene, the need for lowering the order

for pressure may not apply to all elements of

the mesh. There is evidene, however, that it

is better to use a ombination of basis fun-

tions that ful�lls the LBB ondition, even

in the broader ontext of the shallow water

equations (Le Roux et al., 1998). Our own

experiene pinpoints that the behavior of the

solution depends on the appliation. We are

de�nitely missing a general theory of stabil-

ity for the FE approximation in the broader

ontext of the shallow water equations.

The fat that the pressure basis funtions

have to be of lower order ompared to the ve-

loity basis funtions means that the overall

trunation order of the stabilized FE meth-

ods for the shallow water equations is proba-

bly lower than the one permitted by the ve-

loity basis funtions. And, sine the other

disadvantage of these stable FE methods is

the umbersome and time onsuming solving

of a large matrix problem (espeially when

all the variables are oupled), it is doubtful

that these methods an ompete with todays

FD oean models in terms of ost and au-

ray.

We fous herein on four di�erent FE mod-

els: the Lynh and Werner model (1987;

1991) (also alled the Quoddy model and the
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Figure 2.5: Triangulation of the domain.

only one of the four used for oastal oeanog-

raphy), the Le Roux et al. (2000; hereafter

LLS) model, the Hua and Thomasset (1984)

model and the Peraire et al. (1986; here-

after PZM) model. Only one model, the LLS

model, among the four satis�es the LBB on-

dition of stabilty. The Quoddy and the PZM

models use a non-staggered (i.e., equal order)

formulation of the variables and therefore re-

quire some kind of stabilizing \trik" whih

we will present and disuss. Due to their

equal-order formulation, these two models

are the simplest, in some sense, of the four

for the same reason that the A-grid FD for-

mulation is simpler than the other stagger-

ing tehniques. In the ontext of the �nite

elements, there are some additional tehni-

al advantages to using non-staggering for-

mulations whih stems from a lower number

of matries to de�ne and to inverse. Also,

it uni�es the use of gradient or divergene

operators. In general, equal-order models

are fairly easy to implement from srath.

Hene, they an be more appealing than

more omplex LBB omplying formulations.

2.3.2 The Galerkin Formulation

Most FE methods are based on the Galerkin

formulation. In these models, the domain, 
,

is broken up into a set of onformal elements

(onformal in the sense that all elements on-

net to neighboring elements through om-

mon verties). The form of the elements is

rather unspei�ed but triangles or quadran-

gles are usually reommended. We favor the

use of triangles (Fig. 2.5) beause omplex

domains are more easily divided into trian-

gles than quadrangles. For eah vertex of the

mesh, M

i

, and in the ontext of linear �nite

elements, there is an assoiated basis fun-

0

0

+1

0

0

iM

Figure 2.6: �

i

, the basis funtion related to

the node M

i

.

tion, �

i

. This basis funtion is pieewise lin-

ear in eah triangle to whihM

i

belongs and

forms a \hat" on top of M

i

(Fig. 2.6). Over

the rest of the domain, the basis funtion is

zero. Let us onsider the equation

�u

�t

= �

�u

�x

. (2.29)

u an be approximated by û =

P

j

û

j

�

j

. The

�nite element approximation of this equa-

tion onsists on multiplying 2.29 by a test

funtion and then integrating the resulting

equation over the whole domain. There is a

ertain freedom upon the hoie for the test-

funtion, though. In the olloation method,

the test-funtion is de�ned as the Æ(x � x

i

)

(the Dira-delta funtion). Then, the formu-

lation bares similarities to the FD method.

If both the basis funtions and the test-

funtions are pieewise onstant, the formu-

lation is similar to the FV method. The

Galerkin approximation is to take for the

test-funtion, �

i

, whih is used to approx-

imate u. Thus, the disretized version of

(2.29) is

X

j

�û

j

�t

h�

j

; �

i

i = �

X

j

û

j

h

��

j

�x

; �

i

i .

(2.30)

where h:; :i is the inner produt de�ned as

hf; gi =

R




fgds. This is equivalent to say

that the errors generated when disretizing

(2.29) are projeted onto another subspae

of the funtion spae (supposedly, a higher
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0 B

x

2

1

φ

-A

Figure 2.7: �

2

is the basis funtion related

to the node x

2

= 0.

degree polynomial subspae). This formu-

lation is said to be \weak" and is also re-

ferred to as the weighted residual approah.

In some partiular ases, it an be shown

that the model equations an be desribed

by a funtional. This leads to the so-alled

variational priniple. In suh a ase, the

Galerkin approximation minimizes the ap-

proximation errors. Sine the pieewise lin-

ear basis funtions, �

i

, are not orthogonal,

the terms h�

j

; �

i

i lead to a matrix that has

to be solved at eah iteration in order to ad-

vane the solution in time. This matrix is

usually referred to as the mass matrix and

noted M. M is usually non-diagonal, but

sparse. In order to gain omputational ef-

�ieny, M is sometimes \lumped"; that is,

all non-diagonal terms are summed onto the

diagonal to form an arti�ial diagonal mass

matrix. This method bears similarities with

the olloation method, as opposed to the

Galerkin method, and an lead to a loss in

auray.

We now onsider the issue of using irregu-

larly spaed grid points in FD and FE meth-

ods. In the FD method, an irregular spaing

of the nodes leads to a loss of order. Let us

onsider the equation

u =

df

dx

(2.31)

Imagine three nodes loated along one axis.

The length between Node 1 and node 2 is

A, and node 2 and node 3 are distaned by

B. Without loss of generality, we an impose

x

1

= �A, x

2

= 0 and x

3

= B (Fig. 2.7). The

usual entered FD disretization of (2.31) at

x

2

gives

u

2

=

f

3

� f

1

A+B

(2.32)

As f

1

= f

2

� A

df

dx

(x

2

) + A

2

d

2

f

dx

2

(x

2

) + O(A

3

)

and f

3

= f

2

+B

df

dx

(x

2

)+B

2

d

2

f

dx

2

(x

2

)+O(B

3

),

u

2

=

f

3

� f

1

A+B

=

df

dx

(x

2

)

+(B �A)

d

2

f

dx

2

(x

2

) +O(A

2

+B

2

)

(2.33)

This formulation is seond order if A = B

but only �rst order if A 6= B.

The same ours for the FE method. Us-

ing linear \hat" funtions to disretize this

axis, the Galerkin disretization of (2.31)

with the basis funtions at node 2 as the test

funtion

hu; �

2

i = h

df

dx

; �

2

i (2.34)

leads to

A (u

1

=6 + u

2

=3) +B (u

3

=6 + u

2

=3) =

1=2(f

3

� f

1

)

(2.35)

where u and f are now approximated by

û =

P

i=1::3

u

i

�

i

and

^

f =

P

i=1::3

f

i

�

i

. To

demonstrate the problem of using irregular

spaing, we use a di�erent approah whih

onsists of using polynomials of inreasing

order that satisfy (2.31). The maximum or-

der for whih (2.35) is onsistent gives the

trunation order of the sheme. If we take

f(x) = 1 and u(x) = 0, (2.35) is exatly sat-

is�ed. If we take f(x) = x and u(x) = 1, the

same applies. But if we take f(x) = x

2

and

u(x) = x, the equality is no longer true for

the general ase of A 6= B, whih means that

the numerial method is only �rst order when

the spaing is not onstant. Therefore, we

expet the order of any FE and FD method

to be redued in the presene of unstrutured

meshes.

2.3.3 The Di�erent Finite Element

Models Tested

The Quoddy Model

The Quoddy model of Lynh and Werner

(1987; 1991) is a full 3D barolini �nite ele-
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ment model. This model was suessfully ap-

plied for oastal and tidal studies on the So-

tian Shelf (Hannah et al., 2000) and the Van-

ouver Island area (Foreman et al., 2000).

It was modi�ed to model the shallow water

equations, retaining the main harateristi

of the Quoddy model, whih are: equal order

of approximation for veloity and elevation,

the divergene of the vertially integrated

momentum equations an be reast by us-

ing the mass balane equation and eliminat-

ing the divergene of the vertially integrated

mass ux. This yields a prognosti equation

for the elevation of seond order in time (a

wave equation). Solving numerially for the

three equations (two momentum equations

and one wave equation) is easy and leads to

a stable model, but, does not balane mass

loally. To guaranty a better loal onser-

vation of mass, a weighted mass equation is

added to the wave equation (the mass equa-

tion an also be viewed as a penalty term).

�

2

�

�t

2

�r � [r � (Huu) + gHr� + f�Hu

�F

w

� �r

2

u

�

+ �

0

�

��

�t

+r:(Hu)

�

= 0

(2.36)

The rational for mixing two equations that

should be satis�ed independently is that

equal-order FE methods are usually unsta-

ble, the same way that the non-staggered

A-grid is usually unstable for FD methods.

Hene, the model is stabilized using physial

priniples (the divergene of the momentum

equations) at the prie that the loal mass

balane is not neessarily satis�ed. This

may have some inuene on the dynamis of

oeani ows.

The Peraire et al. (1986) Model

PZM developed an interesting model us-

ing equal-order interpolation and a two step

expliit time-integration. First, mean val-

ues are omputed for eah triangle entroid

from uxes at verties and then values at

verties are omputed from ux omputed

at triangle entroids. This model is part

of a broader family of Taylor-Galerkin for-

mulations. We reprodue the demonstra-

tion about the Taylor-Galerkin formulation

of Priestley (1992). Starting from the fol-

lowing prognosti equation in a onservation

form

�u

�t

+r � F = 0 , (2.37)

the idea is to inrease the auray of the

�nite di�erening of the time operator by use

of a Taylor's series:

u

n+1

= u

n

+�t

�u

�t

n
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1

2
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2

�

2

u

�t

2

n

+ � � � .

(2.38)

By substituting the original equation (2.37)

in the Taylor's series and trunating the se-

ries after the seond order term yields

u

n+1

= u

n

��tr�F

n

+

1

2

�t

2

r�

�

�F

�u

n

r � F

n

�

.

(2.39)

The Galerkin formulation of this equation in

a weak form is
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; �

i

i = ��thr � F

n

; �

i

i

�

�t

2

2

�

h

�F

�u

n
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Z
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n

� n �

i

dl

�

(2.40)

where u and F are disretized using the

pieewise linear basis funtions. The dif-

�ulty at this stage is to express �F=�u.

One way found by PZM was to approximate

�F=�u by a pieewise onstant funtion and

to express the one-step time integration as a

two step time integration. Thus, if we �rst

integrate forward in time over half a time

step

hu

n+1=2

e

; �

e

i = hu

n

; �

e

i �

�t

2

hr � F

n

; �

e

i ,

(2.41)

where �

e

is the pieewise onstant basis fun-

tion (one over one triangle and zero over the

rest of the domain; the variables with the

undersript e are approximated using these

basis funtions). The Taylor development of

F

n+1=2

at �rst order

F

n+1=2

� F

n

�

1

2

�t

�

�F

�u

r � F

�

n

(2.42)

leads to the approximation

�

�F

�u

r � F

�

n

=

�(F

n+1=2

� F

n

)

�t

2

. (2.43)
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Sine the term on the left hand side is ap-

proximated using pieewise onstant basis

funtions, (2.41) beomes
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(2.44)

In fat, we an integrate by part the �rst

term on the right hand side in order to fur-

ther simplify the equation
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(2.45)

Beause of the use of linear basis funtion the

�rst produt in this equation an be further

simpli�ed to
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(2.46)

This method presents some similarities with

the Lax-Wendro� sheme. It is seond or-

der for smooth problems but might be over-

dissipative at shoks. For purely advetive

problems, PZM found that this formulation

behaves very well and we found that it out-

performs the Quoddy model (not shown).

The Hua and Thomasset (1984) Model

Hua and Thomasset (1984) developed a �-

nite element model staggered in spae, using

disontinuous linear non onforming (P

NC

1

)

basis funtions for the veloity (Fig. 2.8) and

the usual linear basis funtions (P1) for the

pressure. This formulation leads to a diag-

onal mass matrix for veloity, whih leads

-1

+1

-1

Figure 2.8: The disontinuous linear non

onforming basis funtion for the P

NC

1

� P

1

element of Hua and Thomasset (1984) assoi-

ated with eah fae. The basis funtion takes

the value of 1 over the fae and -1 at the op-

posite verties.

to a simpli�ed matrix problem to solve for

the elevation when semi-impliitly disretiz-

ing in time. They laim the model to be

osillation-free, although LLS demonstrated

that the Hua and Thomasset model does not

satisfy the LBB ondition of stability for the

Stokes ow problem. In the shallow water

ontext, it shows some signs of instability

(not shown). After some tests, we hosed

to integrate the equations expliitly in time

using a Runge-Kutta integration tehnique

instead of the semi-impliit tehnique pro-

posed by Hua and Thomasset beause the

instability problem was then less severe.

The Le Roux et al. (2000) Model

LLS proposed to use a semi-impliit semi-

Lagrangian time integration along with a

spatial FE disretization that satis�es the

LBB stability ondition. The partiularity of

their hoie for the basis funtions resides in

using maro-elements. Eah maro-elements

is ut into four sub-triangular elements. The

basis funtions for the veloity are linear in-

side eah sub-triangle and the basis funtions

for the pressure (or elevation) are onstant

(see Fig. 2.9). The equation for the elevation
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1/3

1

Figure 2.9: The disontinuous onstant ba-

sis funtion for pressure over the maro-

element of LLS. The maro-element is ut

into four sub-triangular elements. There

are three pressure basis funtions over one

maro-element, one for eah exterior sub-

triangle. They take the value of one over the

exterior sub-triangle and 1/3 over the inte-

rior triangle.

an be inverted loally. Hene, the solution

of the oupled system of shallow water equa-

tions an be redued to solving Helmholtz-

like oupled equations for the veloity om-

ponents. In order to interpolate the vari-

ables at the previous time step on an un-

strutured mesh, they also proposed a high

order kriging method (see Trohu, 1993, for a

review). Using this interpolation tehnique,

they found that the model was performing

very well for the purely advetive problem.

However, the appliation to a �nite element

shallow water model was somewhat disap-

pointing. The high order method destabi-

lizes the model (personal om.). Therefore,

a low order kriging method had to be used,

leading to potentially high arti�ial visosity.

The mass was not onserved, foring LLS to

add a mass orretor. Another disadvantage

of the LLS formulation is the fat that the

elevation basis funtions are pieewise on-

stant. This means that the trunation order

of the model for the elevation is lower than

that for the veloity and might lower the or-

der of the veloity as well, sine the equations

for veloities and elevation are oupled in the

shallow water equations.

2.4 The Disontinuous Spe-

tral Element Method

2.4.1 Introdution

The �rst development of the spetral element

(SE) method ourred in the early eight-

ies (Patera, 1984). The SE method allows

for irregular geometries and high auray

beause of varying order polynomials inside

quadrangles or triangles that form the mesh.

The main distintion between the FE and SE

methods stems from the type of basis fun-

tions used to approximate the model equa-

tions. In FE methods, the basis funtions

are usually onstruted for one spei� or-

der of the sheme (they are derived from La-

grange interpolators on regular grids inside

eah element). They need to be reomputed

as the order of the FE method is modi�ed.

In SE methods, the basis funtions are hier-

arhial and follow easier rules of onstru-

tion (for instane, they an be derived from

Chebyshev or Legendre polynomials). As the

order is augmented, the former set of basis

funtions is simply augmented by a new set

of polynomials onstruted from the previ-

ous set. Therefore, in SE methods, the order

of approximation is user-dependent and an

even vary from element to element. There

seem to be numerial advantages in terms

of matrix inversion in using the Chebyshev

or Legendre polynomials instead of regularly

spaed Lagrange interpolators. The latter

lead to poorer onditioned matries as the or-

der of the sheme is augmented (Le Provost

and Vinent, 1986). As with the spetral

method, the auray of SE method is ex-

ponential with inreasing polynomial order.

However, the SE method o�ers muh higher

exibility in terms of geometrial representa-

tion. And, ontrary to the spetral method

for whih Gibbs osillations are prone to

our in under-resolved regions, in the SE

method, one an easily inrease the polyno-

mial order (p-re�nement) or the number of

elements (h-re�nement) in the underesolved

regions. Using a polynomial order greater

than two, we an also expet that SE meth-

ods are more aurate than onventional FD

or FE methods, and that the onvergene

of the solution with inreasing resolution is

muh faster.



CHAPTER 2. PRESENTATION OF THE NUMERICAL METHODS 22

We noted two appliations in oean mod-

elling using quadrangular SE. The �rst by

Ma (1993) and the seond and more suess-

ful by Iskandarani and Haidvogel (1995). Us-

ing quadrangles, it is relatively easy to on-

strut an orthogonal basis of ardinal fun-

tions whih greatly failitates the omputa-

tion of nonlinear terms and renders trivial

the matrix problem to be solved, provided

the equations are prognosti and solved ex-

pliitly in time (leapfrog, Adams-Bashforth,

Runge-Kutta). One limitation, however,

of using ontinuous basis funtions for the

primitive (or shallow water) variables is that

for stability the maximum polynomial order

for approximating pressure (or elevation) has

to be lowered, ompared to veloity (Iskan-

darani and Haidvogel, 1995). Lowering the

maximum polynomial order of one variable is

similar to staggering the variables in spae in

�nite di�erene methods and is also similar

to satisfying the LBB ondition for �nite ele-

ment methods (see previous setion). On the

other hand, the method leads to a large but

sparse matrix problem if the equations are

solved impliitly in time, or if a Helmholtz or

Poisson-type of system has to be solved. The

only disadvantage of using quadrangles om-

pared to triangles omes from the diÆulty

of disretizing an irregular domain into quad-

rangles, the triangles o�ering more exibility.

Using triangles (Sherwin and Karniadakis,

1996), there is no orthogonal basis of ardinal

funtions. Therefore, a large matrix prob-

lem has to be solved at eah time-step, even

when the equations are disretized expliitly

in time. Moreover, the omputation of non-

linear terms requires a tedious transfer from

the spetral oeÆients to values at Gauss-

like points, and bak to the spetral spae.

However, in restrited appliations, reent

developments led to simpler and heaper al-

gorithms. Lomtev and Karniadakis (1999)

(hereafter referred as LK) avoid the diÆult

problem of de�ning a set of ontinuous high

order polynomials over triangles by reverting

to a disontinuous formulation whih leads

to a loal matrix problem in eah element-

triangle. This is only possible if all the equa-

tions are prognosti (as they are for shallow

water models) and treated expliitly in time.

Lukily, a hydrostati Boussinesq oean with

a free-surfae an be modeled using this sim-

pli�ed spetral element method. Further-

more, their model appears to be stable al-

though the same set of basis funtions is used

for the veloity and pressure. Thus, their

method does not omply to the LBB ondi-

tion. Finally, this method allows for an easy

implementation of a time-variable mesh that

we introdue in Setion 2.4.3.

2.4.2 The Model Formulation

The matrix problem to be solved in eah ele-

ment is rather small for the order of the spe-

tral element we hoose to test (between 3 to

7). Therefore, the onstraint of orthogonal-

ity over the set of polynomials for a ost-

e�etive model is made less stringent. Thus,

we introdued an even simpler set of basis

funtions ompared to LK by simply using a

set of produts of Legendre polynomials with

a triangular trunation.
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(2.47)

where n



is the maximum order of the poly-

nomials and i is indexed as l runs from 0 to

n



and k runs from 0 to n



� l. The solution

an be expressed inside the element j by
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For the elements sharing a side with the

boundary, the projetion of the basis fun-

tions onto another set of basis funtions

whih are always zero right at the bound-

ary ensures the di�erent possible boundary

onditions (no-normal ow, free-slip, no-slip

or invisid)

�

0

i

= L

l

(�

1

)(L

k

(�

2

)� 1) . (2.49)

The projetion method onsists of omput-

ing oeÆients in the new basis using the re-

lation

hf

0

; �

0

i = hf; �i (2.50)

whih satis�es a least square �t and where

f

0

=

P

i

a

0

i

�

0

i

. Sine the equations are ex-

pressed in terms of �

i

, the a

0

i

oeÆients of �

0

i

have to be expressed in terms a

i

of �

i

. This

is straightforward using (2.49). The di�er-

ent boundary onditions an also be imple-

mented for elements sharing only one ver-

tex with the wall. In a square domain, the

onvergene of the auray with resolution

was seemingly good with the ondition im-

plemented for only elements sharing one side

with the wall. Therefore, we only impose the
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boundary onditions on elements sharing a

fae with the boundary although some tests

were done to investigate this point. Further-

more, in opposition to the ontinuous spe-

tral element formulations, we stress that the

same polynomial order is used for all the vari-

ables. From our experiene, we never en-

ounter a problem related to the stability,

exept for trivial CFL problems.

1

3

2S

1

2

S

S

ξ

ξ

Figure 2.10: Loal non-orthogonal oordi-

nates in a given triangle

Figure 2.11: Example of Legendre polynomi-

als �

i

= L

2

(�

1

)L

3

(�

2

)

We apply the disontinuous spetral el-

ement method to the disretization of the

shallow water equations. Using a weak

formulation and the traditional notation

of Galerkin methods, inside eah element-

triangle the system of equations reads:
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where variables and parameters are given in

Table 2.1. The line-integrals are very im-

portant beause they alone transfer informa-

tion in and out of eah element. LK hose

to solve a loal Riemann problem to om-

pute the boundary value but this tehnique,

being similar to an upwind method, leads

to a loss of auray. We favored the sim-

ple hoie of the mean value of both sides of

a fae whih does not a�et auray. The

nonlinear terms are rather expensive to om-

pute (30% of the ost at n



= 5). They

require a transformation of the loal spe-

tral oeÆients to a loal set of Gaussian

points used afterwards to transfer bak to

the spetral spae. The hoie of the right

Gaussian points is obviously important. Af-

ter a few trials, we favor the use of irregular

points on the triangle (Lyness and Jespersen,

1975; Dunavant, 1985), whih are unfortu-

nately only given for polynomials of degree

up to 20 (the mass matrix an be exatly

omputed for n



� 10). For higher degrees,

it is always possible to use a regular set of

Legendre-Gauss or Legendre-Lobatto points

(but at a higher ost sine these sets of points

are not optimal on the triangle). For n



= 0,

we note that the disontinuous SE formula-

tion is equivalent to a FV method.

The time integration is done using a 4th

order Runge-Kutta method. Thus, using

polynomials of degree n



= 5 for instane,

gives a ertain equivalene between spatial

and time trunation errors. The spetral ele-

ment model is hereafter referred to as SPOC.

A onstant eddy visosity oeÆient is

used to allow for easy omparisons between

models. In a disontinuous spetral element



CHAPTER 2. PRESENTATION OF THE NUMERICAL METHODS 24

model, the Laplaian operator of the velo-

ity omponents annot be omputed diretly

(see LK for details). The omputation has to

be done in two steps. First, the gradient ten-

sor of the veloity is omputed using a weak

formulation and an integration by parts. The

mass matrix is then inverted:

h

�u

�x

; �

i

i = �hu;
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i

�x
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I

u

bd

�

i

n

x

ds .

(2.54)

Seond, the gradient of gradient terms is

omputed in the momentum equations again

using an integration by parts. This ensures

that the gradient terms are (weakly) on-

tinuous between elements. Sine the om-

putation of the gradient tensor is neessary

for the omputation of the nonlinear terms,

this treatment of the di�usion terms does not

hamper the omputational ost. In 2D, it

involves the omputation of 4 extra-terms,

and in 3D, 9 terms. For the free-slip bound-

ary ondition (the one used hereafter), the

normal veloity omponent and the normal

derivative of the tangential veloity must

vanish at the wall (�

2

= �1). This requires

a rotation of the veloity omponents and of

the gradient tensor and a projetion onto the

speial basis funtion de�ned in (2.49).

2.4.3 Adaptive Mesh Re�nement

Given the two to three orders of magnitude

di�erene between the sale of eddies and

the basin sale, today's global oean eddy

resolving models require a variable in time

and spae resolution. To ful�ll this on-

straint, not only do we need a variable in

spae resolution model (whih the FE and

SE models already o�er), but we also need

some exibility of the mesh in time, sine ed-

dies and fronts are unsteady phenomena. By

adaptive mesh re�nement, we mean that the

mesh is re�ned automatially as the simula-

tion goes on in regions where estimated er-

rors are the largest. The diÆulty is in om-

puting an error estimator that determines

where to put more resolution. For FE meth-

ods using linear basis funtions, it is usu-

ally reommended to estimate the loal se-

ond order derivatives of the �elds and put

more resolution where these derivatives are

the largest (Zienkiewiz and Taylor, 1991,

p.571). Beause the solution is pieewise lin-

ear, it is diÆult to estimate its seond order

derivatives. This usually requires the reon-

strution of the solution by a higher order

method (Zhu and Zienkiewiz, 1990). For

ontinuous SE methods, adaptive strategies

require to estimate the slope of the spetral

oeÆients with wave number. If there is

too muh energy in the high wave numbers,

the elements have to be re�ned (Mavriplis,

1994). This is a less omplex proedure than

that for FE methods. Adaptive strategies

are diÆult to implement in FD models be-

ause the Cartesian grids lak the exibil-

ity of irregular meshes of FE and SE meth-

ods. Some adaptive mesh strategies have

been proposed, though, in the form of nested

grids. The oarse grid follows the overall ir-

ulation while the �ner grid fouses on a par-

tiular region of interest. Both interating in

a one-way or two-way fashion depending on

the models (Blayo and Debreu, 1999; Wadley

and Bigg, 1999).

From the point of view of de�ning an er-

ror estimator, the disontinuous SE method

is slightly more e�etive. Sine the proposed

SE formulation allows the solution to be

disontinuous between elements, a straight-

forward estimator is to ompute the maxi-

mum jump between elements for eah �eld.

Though very simple, this estimator has not

yet been found in the literature. This is

therefore our own development. One the

error estimator has been de�ned, the re�ne-

ment or dere�nement of the mesh is fairly

onventional and an be found in many text-

books, for instane in Zienkiewiz and Tay-

lor (1991) at p.574. We �nally end up with

four parameters that ontrol the re�nement

in time (see Table 2.2). The re�nement is hi-

erarhial. When a triangle is to be re�ned,

it is ut into four hildren-triangles and if the

neighboring triangles are not to be re�ned,

they are ut into two hildren-triangles in or-

der to have a onformal onnetivity. But

if one of the two hildren-triangles is to be

later re�ned, their parent-triangle will be ut

into four, as the utting into two hildren-

triangles is only needed to omplete the on-

netivity (Fig.2.12). All the re�nements of

the mesh will be kept in memory, easing the

bakward proess of dere�nement. The CFL

ondition is updated every time the mesh is

modi�ed. The model requires a ertain ad-

justment time in order to smooth the jump

between elements after eah re�nement of

the mesh. Therefore there is a minimum

value for n

hek

(Table 2.2) depending on
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Para-

meters

Relative

value

Funtion

�

1

0.01-0.03 value of the jump

above whih the ele-

ment is re�ned

�

2

0.001 value of the jump be-

low whih the ele-

ment is to be dere-

�ned

�

3

0.05-0.15 value of the jump

above whih the sim-

ulation is restarted

using older �elds

n

hek

1000 number of time step

between two heks

of the jumps be-

tween the elements

Table 2.2: Re�nements parameters used in

the simulations unless otherwise spei�ed.

the time-step and the physial parameters.

Hene, for a time stepping simulation, the

model stops regularly to hek the level of

errors, re�nes the resolution aordingly, in-

terpolates the �elds onto the new mesh and

then restarts with the new mesh and �elds.

In ontrast to steady ows for whih the so-

lution is unique (if the initial guess is lose

enough), the transient simulations present

the disadvantage that the solution auray

might degrade beause the errors are still

present in the new �elds, although the res-

olution has been improved. This justi�es

the use of �

3

, the relative jump value above

whih the errors have reahed an unaept-

able level. If so, the model should not restart

from the present time-step but from a previ-

ously saved time-step at whih the level of

errors was aeptable. The question of au-

ray of adaptive time-stepping solutions also

arises from the issue of interpolating the vari-

able �elds, sine the interpolation does not

onserve mass or energy.

Figure 2.12: Remeshing strategies. The tri-

angle to be re�ned is in grey.

2.4.4 Curved Spetral Element

Method

As we stressed in Setion 2.2, the representa-

tion of the irregular geometry is the weakest

point of FD methods. They represent the

oastline as step-like walls. This would be

equivalent to say that the boundary is piee-

wise onstant, i.e, disontinuous. In on-

trast, FE methods usually represent a om-

plex boundary by pieewise linear segments.

Thus, the model boundary is C

0

ontinuous.

In order to represent aurately a omplex

boundary in SE formulations, it is better

to streth or urve the element boundaries

than to inrease the number of elements in

a region of strong urvature (and keep the

model boundary pieewise linear) as done in

FE methods. Doing otherwise results in an

inrease in the number of elements and an

inrease in the resolution to the point that

the ost of using higher order polynomials

beomes prohibitive. It makes more sense

to take advantage of the high order to get

a boundary as smooth as possible (and try

to get rid of disontinuities between piee-

wise segments along the boundary). This al-

lows for faster onvergene rates when the

numerial solution is ompared to analyti-

al solutions found in ontinuously varying

urvature domains. Furthermore, high or-

der methods tend to behave badly in the

presene of singularities along the boundaries

(Gibbs osillations). This is partiularly true

for this disontinuous SE method. In fat, we
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Figure 2.13: Transformation of one triangle

intro a urved triangle

observe in one test-experiment these osilla-

tions loalized around the tip of one retan-

gular ontinent. Hene, a lear limitation of

this SE formulation lies in the presene of

singularities along the oastline. It is not so

muh a surprise that the high order meth-

ods tends to behave badly in the presene of

singularities ompared with low order meth-

ods. Singularities exite the highest modes

of the high order methods and so, lead to

strong osillations. In partiular, the adap-

tive method developed in the previous hap-

ter fails to onvergene in the presene of sin-

gularities (not shown). Therefore, the solu-

tion may ome from smoothing out the geom-

etry by using urved elements. In pratie,

the additional ost assoiated with the imple-

mentation of urved elements in triangular

spetral elements limits the order of onti-

nuity of the model boundary. This setion is

devoted to the development of a urved spe-

tral element model. Although urved spe-

tral elements may appear natural, few details

are available in the literature about their im-

plementation. We therefore develop our own

methodology.

For a triangle with loal oordinates vary-

ing in 0 < � < 1, 0 < �; 1 � �, there is

a loal analytial transformation that trans-

forms one of the faes into a paraboli seg-

ment (Fig. 2.13):

(

�

0

= � + a��

�

0

= �+ b�� .

(2.55)

The segment is paraboli in the sense that

it an be represented by an equation whih

is quadrati in term of �

0

and �

0

. Hene,

we an represent urved oastlines as piee-

wise paraboli segments. Sine the oordi-

nate system we hoose for integration over

2
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1

ξ
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Figure 2.14: Transformation of one triangle

intro a urved triangle with the oordinate

system used in the omputation of the inte-

grals

the triangle (Fig. 2.14) is (�

1

, �

2

), the exat

transformation is
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(2.56)

The Jaobian matrix J of this transforma-

tion is needed for omputing the integrals

J =

�

J

11

J

12

J

21

J

22

�

with

8

>

>

>

>

<

>

>

>

>

:

J

11

= 1 �b (�

1

+ 1=2 + 1=2 �

2

)

J

12

= �b=2 (�

1

+ 1)

J

21

= (b+ a) (�

1

+ 1=2 + 1=2 �

2

)

J

22

= 1 +(b+ a)=2 (�

1

+ 1) .

(2.57)

For instane the omputation of the mass

matrix M beomes

M

ij

=

Z

T

�

i

(�

1

; �

2

) �

j

(�

1

; �

2

) d�

0

1

d�

0

2

=

Z

T

�

i

(�

1

; �

2

) �

j

(�

1

; �

2

) det(J) d�

1

d�

2

(2.58)

The obvious inonveniene is that the Gaus-

sian rules we use to ompute the integrals

and, more spei�ally, the nonlinear terms,

need to be augmented by two degrees, sine

det(J) is a polynomial expression of degree

2. Therefore, a set of polynomials of degree

5 require a Gaussian rule of degree 12 instead

of 10. Keeping the old set of Gaussian rule

is not impossible but leads to large errors
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sine the integrals are not exatly evaluated.

From that point of view, the spetral quad-

rangle is more eÆient. Sine it exists a set

of ardinal-orthogonal polynomials on a ret-

angle, it is more e�etive to keep the old set

of Gauss-Lobatto points even if the integrals

are no more exat in a urved quadrangle.

In fat, the errors in the omputation of the

integrals are, in this ase, roughly of the or-

der of the maximum polynomial order (Ron-

quist, 1980). However, for triangular spe-

tral elements, the inonveniene of inreasing

the number of Gaussian points applies only

for the urved elements along the boundary.

Therefore, the problem of additional ost is

not so serious sine it onerns a small set of

elements.

2.5 Summary

In summary, all numerial methods have

their advantages and drawbaks. Traditional

FD methods are of low order (usually, se-

ond order) and very easy to implement but

may lak auray due to the presene of

steps in irregular domains. FE methods dis-

retize easily omplex domains but are gen-

erally of low order and require the solution of

a matrix problem. Moreover, they may lose

one order in trunation errors if the mesh is

too irregular (whih often ours for triangu-

lar meshes). By ontrast, traditional imple-

mentations of FD methods in oean models

make use of regular grids. SE methods of-

fer high auray in omplex domains but at

an unknown ost and seem to lose auray

in presene of steps. Therefore, they require

the smoothly urved boundaries that we in-

trodue in Setion 2.4.4. We also introdue

a simple adaptive mesh strategy for the SE

method. The mesh is re�ned or dere�ned

when the loal error is too large. The lo-

al error is estimated based on the jump in

the solution between two adjaent elements.

Hene, the SE model should be able to au-

tomatially inrease the resolution in regions

where the solution is under-resolved. This

might be essential in order to resolve and fol-

low loal eddies or moving fronts. The next

step is to investigate the e�etive trunation

order and the ost funtion for all the models

presented in this hapter.



Chapter 3

Testing the Di�erent Numerial

Methods

In this hapter we investigate the auray

of the di�erent models presented in Chap-

ter 2, in straight wall and irular geome-

tries. The test ases are idealized in the sense

that they are based on the linearized shal-

low water equations and therefore, an ana-

lytial solution exists. We are interested in

the e�etive trunation order and the om-

putational ost for all shemes. These on-

siderations are important for the hoie of

a numerial method to use in oean mod-

elling. Although this approah is very ba-

si, we stress the fat that these ompara-

tive studies are rarely done and that little

is known about the relative e�etiveness and

ost of eah sheme. For the �nite di�er-

ene (FD) models in a irular geometry, we

are partiularly interested in the inuene of

the steps for a wind-driven irulation that

ours along the walls when the disretiza-

tion axes do not oinide with the orientation

of the walls. These steps may have a detri-

mental e�et on the overall e�etive truna-

tion order. In ontrast, �nite element (FE)

and spetral element (SE) models have muh

less diÆulty in disretizing omplex bound-

aries. However, the use of irregular grids

may derease the e�etive trunation order

of these models. We perform a onvergene-

with-resolution study for a non-linear prob-

lem in a square domain. In this ase, the

referene solution is given by the high-order

spetral element (SE) method at a high res-

olution. For this problem, we also present

results using the simple adaptive strategy in-

trodued in the previous hapter for the dis-

ontinuous SE method. When a dynamial

boundary ondition has to be found, we tend

to fous on slip boundary onditions. Other-

wise, the uid is assumed to be invisid.

For irular or smooth geometries it is pos-

sible to use urvilinear grids for FD meth-

ods and, hene, avoid the ourrene of steps

along the boundaries. Curvilinear grids an

better �t irregular oastlines and an provide

some variable resolution apabilities, suh

as implemented in the POM (Blumberg and

Herring, 1987) and SPEM (Song and Haid-

vogel, 1994) models. However, some smooth-

ing of the geometry is needed, sine urvilin-

ear grids annot aommodate all bays and

apes. This method is therefore of limited

use, sine it aommodates only the large

sale features of the oastline. For a realis-

ti representation of lateral boundaries, step-

like features would still appear, although the

total number of steps is redued when om-

pared to Cartesian grids. We do not onsider

the use of urvilinear grids in our disussion

of FD methods due to its lak of generality,

although this method might be adequate for

smoothly varying boundaries.

3.1 Gravity Waves in a

Square Domain

In this setion, we present results for the lin-

earized SW gravity wave propagation prob-

lem in a square domain. An elevation per-

turbation is imposed at the beginning of the

simulation, in the form of a sine wave with

phase lines parallel to the y-axis:

�(x; y; t = 0) = h

0

os(2� x=L

x

) . (3.1)

The initial veloity is zero. The wave propa-

gates along the x-axis. Sine there is no dis-

28
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x
y

elevation

Figure 3.1: The wave test experiment

persion in the y-diretion, the problem sim-

pli�es to a one-dimensional problem and a

simple analytial solution an be found. An

equation for � only an be found by substi-

tuting the u-equation in the �-equation

�

tt

� � gH �

xx

� = 0 . (3.2)

With no normal ow boundary onditions,

the solution is

�(x; y; t) = h

0

os

�

2� x

L

x

�

os(!t) (3.3)

where ! =

p

gH 2�=L

x

. Therefore, the wave

is a free mode of osillation for the square

basin. It bounes bak and forth between the

walls at the period of 2�=!. The veloities

are given by

(

u(x; y; t) = u

0

sin

�

2� x

L

x

�

sin(wt)

v(x; y; t) = 0

(3.4)

where u

0

= gh

0

=

p

gH .

For all models, the numerial simulation

is performed up to a tenth of the harater-

isti period of the wave. This duration is

long enough that the estimation of the e�e-

tive trunation order for the di�erent models

is possible and yet not too long so that the

ontamination by other fators suh as time

disretization errors is limited. The Courant

number is kept onstant and is the same for

all models. By inreasing the resolution of

the models and omparing the numerial so-

lution to the analytial solution, we an om-

pute the errors and the e�etive trunation

order of eah sheme. For the FD models, the

grid is oriented along the walls of the square

whih oinide with the diretion of the wave

propagation, also the x-axis. Hene, there

are no dispersion errors in the y-diretion.

However, the FE and SE methods use ir-

regular meshes made of triangles that are

randomly oriented. Therefore, these meth-

ods show a dispersion error along the y-axis

whih an be quanti�ed as a funtion of res-

olution. The errors are omputed and nor-

malized as

E(�

mod

) =

R R

j�

mod

� �j dxdy

R R

dxdy

�

s

R R

dxdy

R R

�

2

dxdy

(3.5)

where � and �

mod

represent respetively the

analytial and model solution of any vari-

able. The term

R R

�

2

dxdy is omputed

analytially and is therefore the same for

all models. For FD models,

R R

j�

mod

�

�j dxdy =

R R

dxdy is approximated by

P

ij

j�

mod

� �j=(n

x

n

y

). For the FE and SE

models, this integral is omputed by inter-

polating j�

mod

��j onto a regular grid, sum-

ming the values and dividing by the number

of sampling points. We inrease the number

of sampling points until a onvergene rite-

rion is satis�ed. The normalized error for u

is obtained from (3.5) by diret replaement

of � by u. For v, this is not possible as its an-

alytial value is zero. We have thus used the

analytial value of u for

R R

�

2

dxdy. The

hoie of norms in (3.5) in determining the

normalized error is somewhat arbitrary and

other norms an be used. However the re-

sults would not be substantially di�erent.

We �rst ompare the auray of the lin-

earized version of the 4th order A-grid model

to that of the seond order C-grid formula-

tion (Figure 3.2). On this log-log plot, the

slope of the urve is diretly related to the or-

der of the onvergene. The C-grid sheme is

very lose to seond order and the original A-

grid model (as proposed by D93 and referred

as O-FDM4) has a onvergene order of lose

to 4. However, the errors an be redued by

a fator of six if the 4th order auray is

extended up to the boundary (R-FDM4 ver-

sion). The gradient and interpolation oper-

ators then need to be o�-entered for points

loated less than two points away from the

walls. In terms of ost, the A-grid model is

very advantageous (see Fig 3.3 where only

results from R-FDM4 is plotted). The ex-

tra points in the omputation of the gradi-
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ent operators needed for 4th order auray

slow the model only slightly. Therefore the

4th order A-grid is ost-e�etive ompared

to the C-grid for this problem.
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Figure 3.2: Convergene with resolution of

the normalized error in the u-omponent for

seond order C-grid formulation (FDM), O-

FDM 4 and R-FDM 4 models. The R-FDM4

is an A-grid formulation with o�-entered op-

erators to inorporate the 4th order auray

up to the boundary
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Figure 3.3: CPU ost with the normalized

error in u-omponent for the seond order

C-grid (FDM) and R-FDM4 models.

For FE models, the use of irregular grids

ause errors to appear in the v-omponent,

perpendiular to the propagation diretion.

These errors an also be viewed as a dis-

persion error. One way to minimize this

error would be to design meshes for whih

the nodes or verties are aligned with the

propagation axis (i.e. harateristi meth-

ods). Suh a mesh would therefore be appli-

ation dependent. We fous instead on the

use of irregular meshes in whih the trian-

gles are randomly oriented sine, in general

oean modelling, there are no preferential

diretions of propagation. We examine the

four FE models introdued in Setion 2.3:

the Lynh and Werner (1987; 1991) model,

the Hua and Thomasset (1984) model, the

Peraire et al. (1986) model and the Le Roux

et al. (2000) model. The respetive abbrevi-

ations are: LW, HT, PZM and LLS. In our

omparison study, we multiply by two the a-

tual resolution of the mesh for the LLS model

to take into aount the fat that this model

impliitly doubles the resolution by dividing

eah triangle into four sub-triangles. Fig-

ure 3.4 shows the onvergene with resolu-

tion of the errors for the v- and u-omponents

for a linearized version of all FE models. In

suh a ase, the LLS model is plainly Eule-

rian instead of semi-Lagrangian. The errors

are generally larger for the FE models om-

pared to the C-grid FD model, exept for the

LLS model where the errors are omparable.

This is notably due to the use of unstru-

tured grids in FE models.

Table 3.1 gives the value of the onver-

gene order for both omponents of the ve-

loities for all models. The order is usually

lower for the v-omponent (loser to �rst or-

der) than that of the u-omponent (loser to

seond order) for all FE models. This is how-

ever an artefat due to studying the two om-

ponents of the veloity separately. The error

in v is usually smaller than the error in u.

This allows for some noise ontamination to

lower the onvergene order for v ompared

to that for u. The onvergene order for the

veloity vetor tends to be in between but

loser to the onvergene order for u sine

the errors are largest for this omponent.

The equal-order FE models (LW and

PZM) present the best onvergene order for

u (about 2) and also the poorest order for

v (about 1). The LLS model presents the

largest order for v. The order for the HT

model is loser to �rst than seond order for

both omponents of veloity. Theoretially,

the best ahievable onvergene order for the

FE models under onsideration is seond or-

der. The fat that the onvergene order

for most models is less than but lose to 2

for u is due to the use of irregular meshes.

The hange, though, is not as dramati as
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predited in Setion 2.3.2 where we predit

�rst order onvergene in presene of irregu-

lar meshes for seond order aurate FE for-

mulations.

Sine the LLS model is the best FE model

in terms of the magnitude of the errors |

to the point that the magnitude ompares

favorably to that of the C-grid errors| it is

worth onsidering some of the reasons behind

this result. First, the method uses maro

elements sub-divided into four elements and

this may \regularize" the mesh sine the four

sub-triangles are idential in shape and area.

Seond, it is also possible that the fat that

the oupled shallow water equations are re-

dued to oupled Helmholtz equations for

the veloity improves the solution for the

veloity. The fat that the order for this

model is somewhat smaller ompared to that

of the LW and the PZM models for the u-

omponent might be a sign that the trun-

ation order for the pressure slightly a�ets

the trunation order for the veloity. This

will be more evident in the next test-ase.

For the HT model, the smaller onvergene

order is probably related to the use of dison-

tinuous basis funtions for the veloities, in

ontrast to ontinuous basis funtions used

in the other FE models. In onlusion, for

this linear problem, all FE models perform

relatively well |exept for the HT model.

We now ompare the results of one FD

model (C-grid) and one FE model (LW) to

the disontinuous SE model (Fig 3.5 and

3.6). To make results omparable, the SE

resolution (the inverse of the mean length of

triangle sides) is multiplied by the maximum

polynomial order. The LW-FE errors are

generally larger than those of the FD and SE

models. The SE model has a onvergene or-

der that varies between n



and n



�1 depend-

ing on the veloity omponents. If the basis

funtions were ontinuous, the best ahiev-

able onvergene order would be n



+1. The

loss of more than one order is probably re-

lated to the use of unstrutured meshes and

the fat that the basis funtions are dison-

tinuous between elements. At n



= 3, the

auray of the SE model is slightly better

than the FD model. At the same resolution,

the higher-order method is always more a-

urate (n



= 5 and 7). Finally we noted that

as for the FE models, the SE model shows a

di�erene (Table 3.1) in the onvergene or-

der for v and u, with the order for v being
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Figure 3.4: The four FE models (LW, HT,
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solution with inreasing resolution. On top is
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of the C-grid FD model is plotted for om-
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smaller than that for u. This is related to

the use of irregular grids and noise ontami-

nation problems.

Figure 3.7 shows the variation of the CPU

ost with respet to the auray for the

C-grid FD model and one A-grid FD (R-

FDM4) model, the LW and LLS FE mod-

els and the disontinuous SE model. The

urve is usually a straight line. The less the

slope of the urve, the more aurate for the

same ost one model is. The model whose

urves lies on the right (left) of the others is

the most (less) eonomi model. There is of

ourse the possibility that some models per-

form better than the others depending on the

range of the required auray due to the ex-

istene of ross-over points between the dif-

ferent urves. The LW model is always less

aurate for the same ost with the slope be-

ing equivalent to that of the �nite di�erene

model. The LLS model enhaned auray

ompared to the other FE models (Fig. 3.4)

is traded o� by a large inrease of the CPU

ost, to the point that the LLS model is only

marginally better than the LW model. The

SE model with n



= 5 behaves similarly to

the 4th order A-grid model. However, the A-

grid model is slightly more aurate for the

same ost. Nonetheless, the SE model with

n



= 7 give better results than this 4th or-

der FD model. From this linear test ase,

we onlude that it is more e�etive to use

higher order methods (the SE and R-FDM4

models).

3.2 The Wind-driven Ciru-

lation in a Cirular Do-

main

A linear analytial solution an be found for

the wind-driven problem in a irular domain

with Coriolis fores and damped by a lin-

ear bottom frition. No visosity is inluded.

The boundary ondition is simply the no-

normal ow ondition at the model bound-

ary. The steady state linearized shallow wa-

ter equations in ylindrial oordinates for
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Figure 3.5: Convergene of the normalized

error in v with respet to the resolution for

the LW-FE and SE models. SPOC3,5,7 or-

responds to the SE model with n = 3; 5; 7
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The former is measured by the area inte-

grated absolute value di�erene between the

numerial and analytial model results for

the C-grid FD, R-FDM4, LW, LLS and SE

models. SPOC3,5,7 orresponds to the SE

model with n = 3; 5; 7

Model

onvergene

order for

the error in

v

onvergene

order for

the error in

u

C-grid FD {

2.03

O-FDM 4 { 3.85

R-FDM 4 { 4.09

LW

0.94 1.91

HT 1.08 1.30

LLS 1.43 1.69

PZM 1.01 1.97

SPOC 3

2.57 2.73

SPOC 5 4.00 4.68

SPOC 7 5.96 6.72

Table 3.1: Convergene order for the di�er-

ent models for the linear wave experiment in

a square domain. For all models, the order is

fairly lose to their theoretial value. Models

using unstrutured grids lost almost an order

for the error in v ompared to the error in u.

this problem are

g

��

�r

= ��v

r

+ �

x

=H os � + fv

�

(3.6)

g

r

��

��

= ��v

�

� �

x

=H sin � � fv

r

(3.7)

�(rv

r

)

�r

+

�(v

�

)

��

= 0 (3.8)

where the wind foring is given in ylindrial

oordinates by the relationship

�

x

=

W y

R

=

Wr sin �

R

. (3.9)

where R is the radius of the irular domain.

From (3.6-3.8), we derive an equation for �

r

�

2

�

�r

2

+

��

�r

+

1

r

�

2

�

��

2

= �r

Wf

RgH�

(3.10)

with the boundary ondition of no-normal

ow

�

��

�r

+

f

r

��

��

=

�

x

f

gH

(� os ��f sin �) at r = R .

(3.11)

This leads to the solution without Coriolis

fore,

� =

Wr

2

4gHR

sin 2� (3.12)

and with Coriolis fore

� =

Wf

RgH�

�

R

2

8

+

r

2

4

�

�

f

sin 2� � 1

��

.

(3.13)

With or without the Coriolis terms, the ve-

loity omponents take the simple form of

8

<

:

v

r

= 0

v

�

= �

Wr

2R�

(3.14)

whih translate in the Cartesian oordinate

system to

8

>

<

>

:

u =

W

2R�

y

v = �

W

2R�

x .

(3.15)

We perform a one year spin-up for all models

with W = 10

�4

m

2

s

�2

, f = 10

�4

s

�1

or zero
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and � = 10

�3

s

�1

. This is enough to on-

verge to a steady state aurate at six digits

for the kineti energy. The normalized error

is omputed in the same manner as in (3.5)

but using the elevation �eld. We fous on the

elevation this time beause, for the HT and

LLS FE models, the pressure basis funtions

are di�erent from the basis funtions used to

represent the veloity. Furthermore, the pre-

vious test ase does not allow for an inter-

esting omparison of the elevation �elds (the

elevation is imposed at initial time), whereas

this one does.

We �rst analyze the results from the C-

grid model. Beause of the presene of steps

(Fig. 3.8), it is not lear whih opposing ef-

fet is dominant when the resolution is in-

reased: an inreased auray in the inte-

rior and a more aurate representation of

the boundary, or a lower auray beause of

the inreased number of steps. For brevity,

we only show the results for one ase, at

f = 0, sine onvergene properties are not

signi�antly di�erent than those at f 6= 0.

Figure 3.9 shows the onvergene of the nor-

malized error in � with inreasing resolution.

It appears that the onvergene order of the

C-grid FD model is loser to one (1.1 when

f = 0 and 1.3 when f = 10

�4

s

�1

) than two,

the maximum for this seond order FD for-

mulation. Therefore, the steps have a diret

inuene on the order of the FD model. The

order is redued ompared to the previous

test-ase with straight walls. The perturba-

tion due to the singular steps on the ow

does degrade the auray, although not to

the point that the errors inreases with in-

reasing resolution.

We now ompare the solution from the C-

grid FD model with the O-FDM4 and R-

FDM4 models. Figure 3.9 shows that the

order of the A-grid model is atually less

than two in presene of step-like walls. Fur-

thermore, there is no longer a di�erene, in

term of trunation order, between the se-

ond order C-grid and the 4th order A-grid

models |unlike the ase with straight walls.

Therefore, the presene of steps along irreg-

ular boundaries has a detrimental e�et on

the auray of high order FD formulations

if the ow is allowed to slip along the walls.

We now ompare the FE models to the C-

grid model. In this irular geometry, all FE

Figure 3.8: Grids for the irular domain for

the FD models. 51�51, 101�101 and 201�

201 points for domain on the left, enter and

right respetively.
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Figure 3.9: Convergene with resolution of

the normalized elevation error for the se-

ond order C-grid FD, O-FDM4 and R-FDM4

models in a irular domain.

models have the advantage that the repre-

sentation of the boundary is improving as

the resolution is inreased. Therefore, it

should be possible to observe onvergene or-

der lose or even exeeding two. Figure 3.10

and Table 3.2 show that all FE models have

a onvergene rate lose to seond order ex-

ept for the LLS model. The LLS model also

shows the largest errors. The reasons for the

poor performane of this model are as fol-

lows. Firstly, the geometry is resolved by the

maro-elements. Thus the representation of

the boundary su�ers from being half sam-

pled ompared to the permitted resolution.

Seond, we fous here on the elevation errors

whih are always larger for the LLS model

beause the pieewise onstant basis fun-

tions are not as aurate as those of the other

models. For the HT model, the improvement

in the error ompared to the previous test-

ase is probably due to the basis funtion for

� being ontinuous. In fat, all FE models

used this basis funtion for the elevation ex-

ept for the LLS model. Hene in terms of

auray, all FE models appear to perform

better than FD models in non-retangular

geometries for linear problems, exept for the

LLS model. In terms of ost, the equal-order

FE models are the most e�etive. However,

we still need to demonstrate the eÆieny

of FE models for nonlinear problems before

onluding on the general e�etiveness of FE

models in irregular domains.

0.0001

0.001

0.01

0.1

1

1 10 100

N
o

rm
al

iz
ed

 e
rr

o
r 

in
 e

ta

Resolution (number of points in the x-direction)

slope 2

C-grid FD
LW
HT

PZM
LLS

Figure 3.10: Normalized elevation error in a

irular domain for an invisid linear solu-

tion. The four FE models (LW, HT, PZM,

LLS) are tested against the analytial solu-

tion with inreasing resolution. The error for

the FD model (FDM) is given for ompari-

son.

For the SE model, the results are given

in Fig. 3.11 where we ompare the solutions

from the C-grid FD, LW FE and SE mod-

els. The results for the SE model shows a

surprising feature. The 3rd order SE model

has a better auray than the FE model but

the errors for the 5th and 7th order SE are

larger than expeted. The onvergene or-

der is also a�eted (see Table 3.2). In this

partiular example, the main soure of er-

rors omes from the disretization of the ir-

ular geometry by pieewise parabolas. A

quadrati spline desription of the irular

boundary allows for (at least) a 3rd onver-

gene order. This explains why the onver-

gene order for the 3rd order SE model ap-

pears optimal but less optimal for the 5th

and 7th order SE model. The order of the so-

lution improves in the interior but the error

along the boundary being larger leads and

auses a overall loss in the onvergene order.

One solution would be to implement more

omplex urved elements along the bound-

ary (using ubi or more splines), but as ex-

plained in Setion 2.4.4, inreasing the order

of the pieewise urves along the urved ele-

ments is not always pratial.
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Figure 3.11: Normalized elevation error for

the C-grid FD, LW-FE and SE models for a

irular domain. The urve for the SE model

at n



= 7 (SPOC 7) is on the right of that

for n



= 5 (SPOC 5) presenting some kind

of \saturation" e�et.

Model

onvergene order

for the error in �

C-grid FD

1.15

O-FDM 4 1.51

R-FDM 4 1.24

LW

2.40

HT 1.91

LLS 0.98

PZM 1.94

SPOC 3
3.33

SPOC 5 4.09

SPOC 7 4.64

Table 3.2: Convergene order in elevation,

for the di�erent models for the linear wind-

driven experiment in a irular domain with-

out Coriolis terms.

3.3 Conservative Properties

of the Di�erent Numer-

ial Formulations for a

Nonlinear Problem

We ompare the FE models and the dison-

tinuous SE model to the solution given by

the C-grid FD model in a test-ase for whih

the total energy (kineti and potential) is

onserved during the time of the simulation.

A geostrophially balaned eddy is initial-

ized at the beginning of the simulation in

a square domain on a beta plane approxi-

mation for all models. The shallow water

equations are fully nonlinear. The uid is

invisid, that is no eddy visosity is applied

and therefore no dynamial boundary on-

dition is required. We introdue two ver-

sions of the LW model. The �rst one is

the original model in whih the mass ma-

trix is lumped (see Setion 2.3 for expla-

nation) and is referred as lumped LW. The

seond version uses the delumped mass ma-

trix (the full |sparse but not diagonal|

mass matrix) and is referred as delumped

LW. The SE model is run on a 132 trian-

gle mesh at n



= 5. The geostrophi eddy

moves slowly westward due to the spheriity

of the earth and slightly southward due to

the nonlinear terms (f

0

= 1:0285 � 10

�4

s

�1

and � = 1:607 � 10

�11

m

�1

s

�1

). The ini-

tial height is 580 m and orresponds to a ve-

loity maximum of 1 m/s urrents for a re-

dued gravity of g

0

= 0:01 m/s

2

. There is no

foring and no dissipation, therefore the to-

tal energy should be onserved. Figure 3.12

shows the results. The FD and SE models

do indeed onserve energy, but all the FE

models tend to lose energy. The FE mod-

els that dissipate energy moderately are the

delumped LW model, losely followed by the

LLS model. The HT model beomes unsta-

ble after a few days of integration and re-

sults for this model are therefore not shown.

This illustrates the severe stability problem

su�ered by this model. The results for the

lumped and delumped LW model are shown

for �

0

= 2� 10

�3

s

�1

(see Setion 2.3 for de-

tails on �

0

). The lumped LW model appear

to be more dissipative than the delumped

version. We tested other values of �

0

for the

lumped and delumped LW models (the re-

sults are not shown). For smaller �

0

both
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Figure 3.12: Total energy after 18 days of

simulation for the C-grid FD and the lumped

LW, delumped LW, PZM and LLS FE mod-

els and the SE model for the geostrophially

balaned eddy with no dissipation and no

foring. All the FE models tend to be over-

dissipative.

versions of the model tend to be even more

dissipative and the lumped version is unsta-

ble when �

0

is too large (> 10

�1

s

�1

) or too

small (< 5 � 10

�5

s

�1

). The inuene of �

0

on the dynamis will be further investigated

in the next test ase.

3.4 The Munk Problem in a

Square Domain

In this setion, we ompare the models us-

ing a seond nonlinear problem, namely the

single gyre Munk problem. With a onstant

wind, the spheriity and rotation of the earth

yield a strong return ow along the western

wall. The wind foring is given by the stress

�

x

= �10

�4

sin(� y=L

y

) m

2

s

�2

and �

y

= 0.

The remaining model parameters are iden-

tial to those of the previous setion. The

energy put in the oean by the winds is dis-

sipated mainly in a visous layer along the

boundary beause of the strong return ow

there. The eddy-visosity, � = 700 m

2

s

�1

, is

onstant over the whole domain. We use the

free-slip boundary ondition. A strong re-

irulation forms in the northwestern part of

the domain, evidene of the nonlinear e�ets

in the solution. Under free-slip, the solution

is very sensitive to the shape of the bound-

aries and to the value of �. We hope to shed

some light on the sensitivity of the FD mod-

els to steps ourring along the boundaries,

as FD models generally do not work well in

irregular geometries. Furthermore, beause

of the sensitivity of the solution to �, we ex-

pet to better observe the dissipative nature

of FE models.

For the C-grid FD model, Adroft and

Marshall (1998), hereafter AM, performed

the same test-ase for somewhat di�erent

model parameters. An important �nding

in this study is that the C-grid model is

very sensitive to the presene of steps, to

the point that simulations run in a rotated

square basin with respet to the grid yield

very di�erent results ompared to the non-

rotated simulation. This sensitivity ould

greatly be redued if the onventional �ve-

point Laplaian in the visous tensor is re-

plaed by a disretized vortiity-divergene

form. The two tensor formulations are equiv-

alent in a non-rotated basin, but are di�er-

ent in presene of steps. Around steps, the

vortiity-divergene formulation tends to a-

elerate the uid parels ompared to the

onventional stress formulation. Their �nd-

ings suggest that free-slip irulations an be

made independent of the way the oastline is

disretized. We shall return to this issue in

the next hapter.

We onsider the solution from the 4th or-

der A-grid model. When running the non-

linear version of this model with free-slip

boundary onditions, we noted that hav-

ing 4th order auray extended up to the

boundaries has some positive inuene on

the stability of the overall model. Figure 3.13

shows that large spurious numerial modes

are present for O-FDM4, whereas there are

no visible spurious modes for R-FDM4. We

also onsider the same experiment in a ro-

tated basin with respet to the grid, follow-

ing AM. Strong numerial noise again ours

for O-FDM4 (Fig. 3.14). The model remains

however stable and relatively noise-free when

the 4th order extends up to the walls, al-

though the total kineti energy is less than

that for the non-rotated basin experiment.

Moreover, the overall irulation looks very
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similar to that observed by AM with the

C-grid and onventional visous stress ten-

sor in rotated basins. The C-grid solutions

tend to be less noisy, though. These two ob-

servations (numerial noise and lower ener-

geti level) demonstrate that the 4th order

formulation is very sensitive to the presene

of steps when the free-slip boundary ondi-

tion is used. We did not test whether the

vortiity-divergene form of the stress tensor

has the same positive inuene for R-FDM4,

as it does in the ase of the C-grid. Chap-

ter 4 will be spei�ally dediated to a thor-

ough study of the issue of FD disretizations

and advetive and stress tensor formulations

in rotated basins.

We ompare now the FE models to the so-

lution given by the C-grid FD model for a

non-rotated basin. All FE models tend to

show a kineti energy value well below the

FD model during spin-up (Fig. 3.15). The

irulation also proves to be weaker in mag-

nitude for the FE models when ompared to

the FD model irulation (Fig. 3.16), show-

ing the dissipative nature of FE models. We

disuss some of the reason for this behavior.

For the HT model, inreasing the resolution

did not improve the solution (not shown).

There is therefore some sort of zero truna-

tion order error in this model. This may arise

from the disretization error of the nonlin-

ear terms in the momentum equations due

to the disontinuous linear form of the ve-

loity basis funtions. The PZM model may

be dissipative beause of the use of averaged

values at triangle entroids in the omputa-

tion of uxes. The LLS is dissipative be-

ause of the dissipative nature of the low or-

der Kriging method used in the time semi-

Lagrangian disretization (see Setion 2.3 for

more details). We do not expet to see any

improvement with inreased resolution for

this model beause higher resolution means

smaller time-steps, and therefore, a larger

number of interpolation operations.

For the LW model, the mass equation is

not solved independently for the elevation

but is mixed with a wave equation (Eq. 2.36).

In theory, both equations should be satis�ed

independently. However, sine both equa-

tions are mixed together, neither is solved

exatly and this may inuene the overall

oeani irulation. The wave equation tends

to transfer �, equivalent to the mass, through

the whole domain by means of gravity waves.
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Figure 3.15: Kineti energy during a 6 year

spin-up for the C-grid FD, the lumped LW,

HT, PZM and LLS FE models.

This proess may upset the loal geostrophi

balane by transferring the mass through the

streamlines. This proess is equivalent to

having a dissipation term in the mass equa-

tion. To illustrate this, we vary the value

for �

0

, the free parameter appearing in the

wave-mass equation for the wind-driven sin-

gle gyre Munk problem. Figure 3.17 shows

that the kineti energy for a single gyre wind

foring at the end of the simulation varies sig-

ni�antly with the value of �

0

(not to be on-

fused with the wind stress; see Setion 2.3 for

details). In the limit �

0

! 1, whih orre-

sponds to satisfying the loal mass balane,

the results are very similar to the ones ob-

tained using the FD method. However, as

we noted earlier the model an be unstable

for large values of �

0

for ertain appliations

(Setion 3.3). A good ompromise is found

by experimenting with di�erent values of �

0

and is therefore very appliation dependent.

For the disontinuous SE model, we on-

sider the Munk problem for two values of

the eddy-visosity. We retained for ompar-

ison the C-grid FD model and the delumped

LW FE model at �

0

= 2 � 10

�3

s

�1

, whih

gives better results than the lumped version.

The SE model is run at n



= 5 on a 56 tri-

angle mesh. We ompared results from the

FD, SE and FE models for two values of the

visosity oeÆient. For the high visosity

ase (� = 2000 m

2

s

�1

, Fig.3.18) the models

perform similarly, with the FE model show-

ing smaller undershoots. The SE and FD
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Figure 3.13: Elevation �eld after a six year simulation in a non-rotated basin using O-FDM4

(left panel) and R-FDM4 (right panel). The onventional Laplaian is used.

Figure 3.14: As for Figure 3.13 but for rotated basin.



CHAPTER 3. TESTING THE DIFFERENT NUMERICAL METHODS 40

0

0

100200

300

400

C-grid FD

0

0

100

20
0

lumped LW

0

0

100

20
0

300

delumped LW

0

0

10
0

20
0

300

HT

0

0

10
0

20
0

300

PZM

0

0

100200

LLS

Figure 3.16: Elevation �eld after a 6 year spin-up for the C-grid FD, the lumped LW,

delumped LW, HT, PZM and LLS FE models for the single gyre wind foring problem.
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Figure 3.17: Single gyre wind foring experi-

ments for the delumped LW FE model om-

pared to the C-grid FD model. As �

0

in-

reases the weight is more on the mass equa-

tion than on the wave equation in the LW

model. This inuenes the value of the ki-

neti energy at the end of the 6 year runs

(blak squares). For referene, the FD urve

and, LW urves for � =700 m

2

s

�1

at �

0

=

2 10

�3

s

�1

.

kineti energy urves are indistinguishable.

For the SE model, Figure 3.19 gives the on-

tours of the elevation at the end of the simu-

lation. No disontinuities are visible, despite

the fat that the solution is disontinuous by

de�nition. A larger disrepany is observable

for a lower visosity ase (� = 700 m

2

s

�1

,

Fig.3.20) between the FE model and the FD

and SE models, due to the dissipative nature

of the LW model. At the end of the 6 year

simulation, there is a 5% di�erene between

the kineti energy for the FD and SE models.

This is an evidene that the SE model laks

resolution in ertain parts of the domain, as

some disontinuities are now visible in the

elevation �eld (Fig.3.21).

We now examine the auray and ost of

the FD and SE models. We have disarded

the solutions obtained by all FE models be-

ause of their over-dissipative behavior. As

an indiator of the auray, we use the ki-

neti energy of the basin. Sine the solu-

tion of this test problem is nonlinear, a ref-

erene solution is obtained by running the

spetral model for 6 years from rest with

n



= 7 and a mesh of 132 nodes. The er-
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Figure 3.18: Kineti energy during spin-

up for the single gyre Munk problem with

� = 2000 m

2

s

�1

for the C-grid FD, the

delumped LW FE and SE models. The FD

and SE urves are indistinguishable. For the

SE model (SPOC), n



= 5 and the mesh has

56 triangles.

Figure 3.19: Elevation �eld for the SE model

after 6 years from spin-up for the single gyre

Munk problem orresponding to Figure 3.18.
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.

Figure 3.21: As for Fig. 3.19 but with � =

700 m

2

s

�1

.

ror is then de�ned as the di�erene between

the value of the kineti energy obtained by

one model after a 6 year run and that of

the referene solution. The normalized er-

ror is omputed by dividing the error by the

value of the kineti energy found in the ref-

erene solution. Figures 3.22 and 3.23 show

the onvergene of the error with resolution

and CPU ost respetively. The fat that

the �nite di�erene results give lose to se-

ond order auray suggests the referene so-

lution is an aurate approximation of the

true solution. These two �gures on�rm in

general the behavior inferred from the lin-

ear test ase. The onvergene with resolu-

tion and CPU time is faster with higher order

methods. However, the fat that there is a

ross-over point indiates that below a er-

tain resolution (�x > 10 km), the FD model

is more aurate for the same ost. At the

ross-over point the error in kineti energy

is less than 1%. Therefore, the SE model is

more ost-e�etive than the FD model in a

range of resolution for whih the overall error

is already below 1%.

It is also of interest to investigate the ost-

e�etiveness of the adaptive re�nement strat-

egy developed in Setion 2.4.3 for the SE

model. Sine this allows for variable reso-

lution in spae and time, it may prove more

e�etive than having a �xed and rather uni-

form mesh in time. We use the re�nement

parameters �

i

and n

hek

given in Table 2.2

and we test the SE model for the Munk prob-

lem with � = 700 m

2

s

�1

for three values for

�

1

(0.3, 0.2 and 0.1), whih ontrols the max-

imum disontinuity allowable between two el-

ements. We obtain the irulation patterns

of Figure 3.24 (middle panels) and meshes

(top panels) at the end of the 6 year sim-

ulation. The time evolution of the number

of elements for �

1

= 0:1 (the smallest value

used) shows that part of the re�nement goes

into following the Kelvin waves at the begin-

ning of the simulation, whih require more

resolution along the boundaries (Fig. 3.24,

bottom panels). When the Kelvin adjust-

ment proess weakens, a dere�nement pro-

ess ours along the eastern and southern

boundaries leaving higher resolution regions

along the strong western return ow. As �

1

dereases, the re�ned triangles get smaller

and smaller, and the total number of ele-

ments at the end of the simulation inreases

slightly. The isolines of the elevation �eld

are smoother than those of Figure 3.21, for
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Figure 3.23: As for Fig. 3.22 but for the on-

vergene of the normalized error with CPU

ost.

Model

onvergene order

for the error in

kineti energy

C-grid FD

2.18

SPOC 5 4.96

Table 3.3: Convergene order for the di�er-

ent models for the nonlinear Munk problem

in a square domain.

whih a �xed and rather uniform 56-triangle

mesh was used for the SE model. There-

fore, the 56-triangle mesh is too oarse to

model this partiular Munk problem with

� = 700 m

2

s

�1

. We also note that the iso-

lines are slightly smoother as �

1

dereases.

The onvergene rate of the error in kineti

energy with resolution is better than the SE

model at n



= 5. However, the auray-

to-ost onvergene is not as good with the

ross-over point of the FD model being at

a higher auray level. This may be due

to the fat that the re�nement needed to re-

solve the Kelvin waves along the boundaries

at the beginning of the simulation results in

smaller time steps. This failure points also to

a need for loal time-stepping, although it is

not quite lear how to implement suh a pro-

edure without loss of auray. Of interest

is to note that the error in the kineti en-

ergy dereases faster than �

1

. For instane,

we gain about one order in the the kineti en-

ergy error by dereasing �

1

by a fator three.

If the SE model were truly of trunation or-

der n



lose to the element edges, the kineti

energy error should have dereased by the

same fator as �

1

. This tends to prove that

the errors in the SE model are larger at the

boundary between elements where the dis-

ontinuities our. However, these errors do

not seem to adversely a�et the overall au-

ray, possibly beause these larger errors are

loalized to the edges of the elements.

3.5 Conlusions

We have tested in this hapter di�erent FD,

FE and SE methods. We �rst rule out the

possibility of using a high order A-grid FD



CHAPTER 3. TESTING THE DIFFERENT NUMERICAL METHODS 44

-116

-66.1

-16.8

32.6

81.9

131
181

230
279

329
378

-116

-66.6

-17

32.6
82.2

132
181
231

281
330

380

-116

-66.6

-17.1

32.4
82

131
181
231

280
330

379

55

60

65

70

75

80

85

90

95

0 500 1000 1500 2000 2500

time (days)

number of grid elements
50

60

70

80

90

100

110

120

130

0 500 1000 1500 2000 2500

time (days)

number of grid elements
50

100

150

200

250

300

0 500 1000 1500 2000 2500

time (days)

number of grid elements

a b 
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model beause, in the presene of irregular

geometries and for an invisid ow, the ef-

fetive trunation order is less than seond

order aurate. This was demonstrated in a

irular domain and is due to the presene

of steps ourring along the boundary when

disretizing omplex domains on Cartesian

grids. The order of the model may have been

preserved in urvilinear geometry, but we did

not onsider urvilinear grids as they are lim-

ited to smooth domains. The same applies to

the seond order C-grid model, although the

loss of auray is less severe.

We also onsidered FE methods, some of

whih are quite simple (equal-order formula-

tion). They all use linear basis funtions for

veloity and therefore we expet these meth-

ods to be no more than seond order au-

rate. In fat, for linear appliations in ret-

angular domains, the e�etive trunation or-

der of FE models is fairly lose to two. There

is an inrease in the errors due to the use of

unstrutured grids. This inrease is suÆient

for FD methods to outperform FE methods

in terms of ost. On the other hand, in a ir-

ular domains the order of the FD methods

is loser to one than two. Thus to obtain the

same auray, the ost of using FD methods

in irregular domains beomes quikly pro-

hibitive with inreasing resolution ompared

to FE methods. However, for nonlinear ap-

pliations, all equal-order FE methods tend

to be more dissipative, mostly beause of

the stabilizing formulations that guarantee

the stability of the model. Hene, applia-

tions of these methods for non-linear oeani

ows seems problemati. There are other FE

methods whih are stable by onstrution,

omplying with the so-alled LBB ondition,

and are non-dissipative (see Setion 2.3 for a

review on FE model stability issues). Unfor-

tunately, the ost assoiated with these mod-

els is fairly large (they generally use higher

than linear basis funtions for the veloity

and leads to fuller matries). Moreover, as

these models use lower order basis funtions

for the elevation (or pressure), the atual a-

uray for this variable may be smaller om-

pared to other numerial methods. Sine

modern altimetry o�ers near global over-

age of the elevation of the oeans, a good

FE oean modelling strategy may be to not

sari�e the auray for this variable. We

used the LLS model whih ful�lls the LBB

stability ondition as an illustration. We

showed that the veloity errors for a linear

test ase are less for this model than those

of the equal-order FE models and that the

elevation errors are greater. However, the in-

reased auray in veloity is exatly traded

o� by an inreased ost. Unfortunately, the

nonlinear (original version) LLS model uses a

semi-impliit semi-Lagrangian time formula-

tion, whih leads to dissipation when applied

to the nonlinear Munk problem. Hene, all

FE models onsidered are too dissipative for

nonlinear appliations. We also investigate

some of the inuene of the \lumping" of

the mass matrix in FE models. Some au-

thors have stressed a loss in auray due to

lumped mass matries (Gresho et al., 1978).

We found that the use of mass lumping has

a detrimental inuene on the double-gyre

experiments with the LW model. The stru-

ture of the solution tends to be more realisti

when no lumping of the mass matrix is per-

formed.

We next onsidered a method based on

disontinuous spetral elements. The SE

method introdued in Chapter 2 shows a bet-

ter auray than FE and FD models for

n



> 3. The onvergene orders are not op-

timal though and vary between n



� 1 and

n



instead of n



+ 1. The SE model with

n



> 3 is more ost-e�etive than FE or FD

methods. This was demonstrated in a ret-

angular geometry most favorable to the FD

model for a linear appliation. For the non-

linear Munk problem in a square basin, the

SE model is, however, more e�etive than

the C-grid FD model only at very high res-

olutions. The simple adaptive strategy we

developed in Setion 2.4.3 for the SE model,

and tested in the previous setion, gives en-

ouraging results. It is not nearly as ost-

e�etive to use ompared to a �xed mesh, but

it may be useful to resolve the �ne details of

the oeani irulations whose loations are

not a priori known. Hene this SE model

appear ost-e�etive to simulate nonlinear

oeani ows in irregular domains. The only

limitation though is that the model tends to

give poor results in presene of singular geo-

metrial features like steps (see Setion 2.4.4)

and therefore requires ontinuously urved

boundaries.

The C-grid FD model using the vortiity-

divergene stress tensor and the enstrophy

onserving advetive sheme might be a good

andidate for general oean modelling. The

loss of auray of seond-order FD meth-
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ods in presene of step-like geometry is less

than one order. This loss is less ompared

to that su�ered by the 4th order FD model.

A seond order FD model might thus still

be ompetitive ompared to intriate LBB-

omplying FE methods. However there are

other limitations. From Chapter 1 we know

that FD methods have problems represent-

ing the fast Kelvin modes if the resolution

is too low ompared to the radius of defor-

mation. Therefore, a FD model should have

many points resolving the radius of deforma-

tion, whih signi�antly inreases the ost.

However, in the ontext of the Munk prob-

lem, it is not lear how retarded Kelvin waves

a�et the steady state of the oean. We pro-

pose to further investigate these issues in the

ontext of the single gyre Munk problem in

Chapter 4.



Chapter 4

Finite Di�erene Methods in

Rotated Basins

In this hapter, we further investigate the

inuene of steps on �nite di�erene mod-

els and, in partiular, we onsider the a-

uray of model vortiity budgets for wind-

driven irulations under the free-slip dy-

nami boundary ondition. Free-slip iru-

lations are typially more energeti than no-

slip irulations, e.g. Pedlosky (1996). He

onsidered the vortiity budget for a quasi-

geostrophi (QG) model. Simple saling ar-

guments reveal that vortiity is more eas-

ily uxed out of the basin when no-slip

onditions are employed. When there is a

net vortiity foring under free-slip ondi-

tions, therefore, stronger gyres are needed to

ahieve the neessary visous ux of vorti-

ity aross the basin boundary. The vortiity

budget is also an interesting diagnosti tool

beause all the terms are in the form of do-

main integrals that an be transformed into

boundary integrals. This suggests that val-

ues of these integrals may be very sensitive to

oastline representation and that areful on-

sideration of the vortiity budget may give

further insight into the e�et of steps on the

overall strength of the gyres. The diÆulty

is in deriving a vortiity budget onsistent

with the model's numerial formulation.

We propose to test di�erent formulations

for the advetive and di�usive terms for the

shallow water C-grid model detailed in Se-

tion 4.2. Additionally, we use vortiity bud-

gets to investigate problems we found with

the B-grid model in Setion 4.3. Finally,

we draw some similarities with results from

a quasi-geostrophi (QG) FD model in Se-

tion 4.4. Indeed, it may seem reasonable

that vortiity budgets are more aurate in

QG models sine the vortiity equation is

solved instead of the primitive equations.

Setion 4.1, 4.2 and 4.4 are exerpts from a

paper we intend to submit to Tellus (the au-

thors are Fr�ed�eri Dupont, David N. Straub

and Charles A. Lin).

4.1 Introdution

To date, there have been few studies fousing

on the issue of oastline representation in �-

nite di�erene models. Shwab and Belestky

(1998) studied the inuene of steps on in-

visid Kelvin waves. Adroft and Marshall

(1998, hereafter referred as AM) addressed

the problem in the ontext of the single gyre

nonlinear Munk problem using a C-grid shal-

low water (SW) model. They showed (as

did Cox, 1979) that the horizontal irula-

tion under no-slip boundary ondition is not

very sensitive to the presene of steps along

the oastline. This an be explained by the

fat that the ore of the boundary urrent

under no-slip is loated a few grid points in-

side the interior of the basin.

For free-slip, however, they ompared re-

sults from non-rotated and rotated square

basin experiments and showed the irula-

tion to be highly sensitive to the presene of

steps along the walls. In rotated basin exper-

iments, the basin was rotated relative to the

grid axes (see Fig. 2.1), but the wind for-

ing and north-south axis were kept onstant

relative to the basin, so that the only di�er-

enes between the experiments are due to the

disretization. The presene of steps along

47
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the boundary tends to redue the strength

of the irulation to the extent that results

obtained using free-slip boundary onditions

with step-like boundaries more losely resem-

bles those with no-slip boundary onditions

than free-slip solutions without steps. More-

over, they showed that, at least for small ro-

tation angles, sensitivity to steps under free-

slip onditions ould be greatly redued by

using a vortiity-divergene formulation of

the visous stress tensor (Made et al., 1991),

hereafter referred as the Æ-� formulation.

We onlude this setion with two re-

marks. The �rst onerns the representa-

tion of the oastline in FD models. Some

methods exist to treat exatly a oast not

oriented along the disretization axes (e.g.,

Forrer and Jeltsh, 1998). These methods

have their own limitations suh as time-step

limitation problems and the treatment of vis-

ous stresses at the boundary. However, the

emphasis of our study is not on developing

or investigating new FD models. The seond

issue relates to the kind of idealized experi-

ments we have performed. We have deliber-

ately introdued arti�ial steps in the model

boundary in these experiments. The preise

appliability of our results to a real oean

basin with irregular oastline remains to be

determined.

4.2 Vortiity Budgets in a C-

grid SW Model

In this setion, we ompare the analyti vor-

tiity budget with the equivalent disretized

vortiity budget for a C-grid shallow water

(SW) model and explain why the two bud-

gets do not math. We then give results

for the disretized vortiity budget and dis-

uss the impliations in terms of modelling

of wind driven gyres in presene of step-like

oastlines.

4.2.1 The General Form of the Dis-

retized Vortiity Budget

We onsider the shallow water equations

�

t

u+ u �ru+ fk� u+r(gh) =

�

h

+ �r

2

u (4.1)

�

t

h+r � (uh) = 0 (4.2)

where the variables are given in Table 2.1.

It is sometimes onvenient to reast the non-

linear terms in (4.3) in the following form:

�

t

u+ qk� (uh) +rB =

�

h

+ �r

2

u , (4.3)

where q and B are also given in Table 2.1.

The kinemati boundary ondition is no nor-

mal ow and the dynami boundary ondi-

tion is taken to be free-slip. The vortiity

equation is found by taking the url of (4.3),

�

t

� +r � (qhu) = k �r�

�

�r

2

u+

�

h

�

.

(4.4)

Upon integration of this equation over a

losed basin, the divergene of the potential

vortiity mass ux anels out and we get

�

t

�

Z




�dxdy

�

= �

I

Æ


��

�n

dl +

I

Æ


� � dl

h

.

(4.5)

Eqns. (4.1-4.2) or (4.2-4.3) an be dis-

retized in di�erent ways. To simplify the

disussion, we leave the time derivative being

ontinuous, and restrit ourselves to the C-

grid. A useful general form of the SW equa-

tion is the following:

�

t

u+ C

u

+D

�

x

� =

�

x

h

x

+ F

x

(4.6)

�

t

v + C

v

+D

�

y

� =

�

y

h

y

+ F

y

(4.7)

�

t

h+D

+

x

U +D

+

y

V = 0 (4.8)

where C = (C

u

; C

v

) represents the

advetion-Coriolis terms, � represents a po-

tential funtion, F= (F

x

; F

y

) are the visous

terms and other notation is desribed in Se-

tion 2.2.2. The exat forms of C, � and F

depend on hoies made with respet to the

disretization. For example, � might rep-

resent the Bernoulli funtion or simply the
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pressure, depending on whether a formula-

tion based on (4.1) or on (4.3) is employed.

We �rst make a general point about numer-

ial vortiity budgets and later disuss the

peuliarities spei� to hoies for C, � and

F. From (4.6) and (4.7) we write the dis-

retized vortiity equation

�

t

� = �D

�

x

C

v

+D

�

y

C

u

+D

�

x

F

y

�D

�

y

F

x

+D

�

x

�

�

y

h

y

�

�D

�

y

�

�

x

h

x

�

.

(4.9)

This equation is de�ned at interior �-nodes

(exluding the boundary nodes), beause it

requires de�ning momentum equations at all

neighboring veloity nodes (white squares in

Fig.4.1). Now we want to sum over all inte-

rior �-indies in order to get the model vor-

tiity budget. For simpliity, we write ve-

tors in plae of x� and y� omponents, even

though the omponents are not disretized at

the same loation (see Chapter2):

�

t

X

ij2


�

��x�y =

X

ij2Æ


�

(C+ F+

�

h

) ��l ,

(4.10)

where Æ


�

is the ensemble of indies repre-

senting the veloities nodes of the envelope of

the interior vortiity node domain, 


�

(blak

nodes in Fig.4.1). We rewrite (4.10) in a

more onvenient form by de�ning

F

adv

=

X

ij2Æ


�

C ��l , (4.11)

F

vis

=

X

ij2Æ


�

F ��l , (4.12)

F

i

=

X

ij2Æ


�

�

�

h

�

��l . (4.13)

Thus (4.10) beomes

�

t

X

ij2


�

��x�y = F

i

+F

o

= F

i

+F

adv

+F

vis

.

(4.14)

F

i

(ux in) is the wind input of vortiity and

F

o

(ux out) is the sum of the visous dif-

fusion ux, F

vis

, and of the advetive ux,

F

adv

. The important point here is to note

that F

adv

ideally should be zero sine it rep-

resents an advetive ux through the basin

lateral boundary. It is not zero in the numer-

ial model beause the domain boundary for

the model vortiity budget is loated half a

grid point inside the domain (see Fig. 4.1).

However, as the resolution inreases, the re-

gion delimiting the vortiity budget domain

approahes the model boundary and, F

adv

should onverge to zero. How quikly this

ours will depend on the numerial formu-

lation.

It is always possible to approximate the

vortiity budget at the model boundary by

using o�-entered derivatives and interpolat-

ing some of the variables to the boundary.

The model numeris, however, make no use

of variable values found by suh an interpo-

lation and therefore, a vortiity budget al-

ulated in this way must be onsidered dis-

tint from the model vortiity budget. Suh

a budget might misrepresent the ontribu-

tion of the di�erent terms of the disretized

equations of the model, espeially if the error

introdued by the oastline disretization is

of lower order than are the trunation errors

of the model. For this reason, we prefer to

use the model vortiity budget. We note also

that the trunation errors in the model vor-

tiity budget are larger than the trunation

errors in solving the shallow water equations,

sine vortiity is a higher order variable.

Figure 4.2 ompares the rotated and non-

rotated basin ases. The integrand (C ��l|

i.e. the loal F

adv

) is plotted as a funtion

of distane around the basin perimeter and

the position of the steps is evident from the

abrupt jumps in the integrand value. When

summed along the perimeter, F

adv

is non-

zero and is larger for the rotated basin ex-

periment ompared to the non-rotated basin

experiment. Starting from this observation,

we are interested in quantifying the impor-

tane of the steps over the global vortiity

budget. First, as inreased resolution leads

to more steps, and due to the singular be-

havior of C ��l lose to steps, it is no longer

obvious that F

adv

onverges to zero with in-

reasing resolution. From this point of view,

F

adv

is probably very sensitive to the formu-

lation of the advetive terms in (4.10), and

extension in (4.1,4.3). Seond, we want to

investigate whether the overall irulation is

sensitive to the presene of an extra term in

the global vortiity budget, as F

adv

an be a

soure or a sink term, depending on its sign.
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4.2.2 Numerial Formulations

We are interested in applying di�erent for-

mulations for the advetion-Coriolis terms

sine we noted that F

adv

was generally non-

zero for the single gyre Munk problem, with

the integrand being partiularly large at

steps. The two advetive numerial shemes

that we onsider are the onventional formu-

lation (based on Eq. 4.1) and the potential

enstrophy onserving formulation (based on

Eq. 4.3).

In addition to testing for sensitivity to the

hoie of advetive shemes, we also onsider

di�erent formulations of the stress tensor.

That the overall irulation is primarily sen-

sitive to the formulation of the stress tensor

is the main result of AM, who found that the

Æ-� formulation gave better results than the

onventional formulation. We refer to Gent

(1993) and Shhepetkin and O'Brien (1996)

for a more omplete disussion on appropri-

ate visous stress tensor formulations for the

shallow water equations and we limit our-

selves to the two stress tensor formulations

used by AM. Below, we review these two for-

mulations. Thus, we are interested in testing

four ombinations of two advetive and two

di�usive formulations. Table 4.1 summarizes

these four di�erent ombinations.

With respet to the advetion-Coriolis

terms, we ompare the onventional formu-

lation to the potential enstrophy onserving

formulation of Sadourny (1975). For the on-

ventional formulation, C and � are given by

8

>

<

>
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(4.15)

and for the potential enstrophy onserving

formulation, C and � are given by
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(4.16)

Both formulations ensure a seond order a-

uray to the disretized SW equations. For

the onventional formulation, hanges are

made to inorporate the boundary ondi-

tions at seond order of auray, by using

o�-entered di�erenings lose to the bound-

ary. No boundary ondition for the vorti-

ity is required. However, sine the enstrophy

onserving sheme expliitly uses the vorti-

ity, this formulation requires that vortiity

be spei�ed at boundary points. We hoose

to set the relative vortiity to zero along the

model boundary, whih is onsistent with the

free-slip boundary ondition along straight

walls. Also, ontrary to the onventional

formulation, no o�-entered di�erening is

needed at the boundary for the omputation

of C.

The two numerial formulations that we

onsider for the visous terms are the

divergene-vortiity tensor formulation of

Made et al. (1991) and the onventional

�ve-point Laplaian. For the latter,
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As with the onventional advetion formu-

lation, hanges are made here to inorpo-

rate the boundary onditions at seond or-

der auray, by using o�-entered di�eren-

ings. Another tehnial remark onerns the

treatment of veloity points lose to tips of

land. For those points (the u and v points of

Fig. 4.3), the tip of the land is half a grid ell

away. Let us fous on the u-point. The prob-

lem is to evaluate the Laplaian of u at this

point. A �ve-point Laplaian requires knowl-

edge of �u=�y in the enter of the northern

and southern sides of the ell surrounding

the u-point, and �u=�x on the eastern and

western sides. The problem lies with �u=�y

on the northern side. The usual treatment

would have

�u

�y

�

�

�

�

north

=

u

i;j+1

� u

ij

�y

(4.18)

whih simpli�es to

�u

�y

�

�

�

�

north

= �

u

ij

�y

, (4.19)

beause of the impermeability ondition

whih sets u

i;j+1

to zero. Alternatively, one
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might take impermeability to imply that the

tip is a stagnation point, in whih ase an

o�-entered di�erening leads to

�u

�y

�

�

�

�

north

= �

2 u

ij

�y

. (4.20)

A third logial possibility would be to apply

the free slip ondition at the tip to onlude

that

�u

�y

�

�

�

�

north

= 0 . (4.21)

We hoose the latter (4.21), in order to let

the \uid" slip as muh as possible along the

walls sine the �rst two onditions (4.19,4.20)

tend to slow down the boundary urrents. A

more aurate formulation of the boundary

ondition lose to the steps an be derived us-

ing a �nite volume formulation, whih treats

the northern visous ux as a mean between

(4.19) and (4.21). However, this would slow

down the boundary urrent due to the use of

(4.19). In addition, more aurate treatment

of the steps have limited value as the steps

are arti�ial.

The divergene-vortiity (Æ-�) form of the

stress tensor leads to the following form for

the Laplaians

(

r

2

u

ij

= D

�

x

Æ �D

+

y

�

r

2

v

ij

= D

�

y

Æ +D

+

x

�

(4.22)

where Æ is the divergene expressed at the h-

loation (enter of the ell). This formulation

is more general in the sense that there is no

adjustment of the formulation at the bound-

ary. Another remark onerns the ase of

straight walls. In that partiular ase, there

is no di�erene between the Æ-� stress tensor

formulation and the traditional formulation.

The di�erene is in the treatment of steps.

To illustrate this, we onsider a ompar-

ison between the two stress tensor formula-

tions for a forward step along a north-owing

western boundary urrent. Choose (i; j) so

that, in Figure 4.3, the �-point right at the

tip of the land orner would have (i; j+1) in-

dies (see Fig. A.1 for indies arrangement).

Thus, the visous terms under the Æ-� formu-

lation are

8
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>

:

r

2

u

ij
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v

i;j+1

�x�y

r

2

v

i;j+1

= onventional part +

u

ij

�x�y

,

(4.23)

where the additional terms are positive.

These additional terms represent a forward-

aeleration. As AM noted, a serious inon-

veniene of the onventional formulation is

that, in presene of steps, there is \extra dif-

fusion" of momentum due to additional ve-

loity points set to zero at the boundary (the

impermeability ondition), as ompared to

the straight wall ase. This extra di�usion is

responsible for slowing down the boundary

urrents. Therefore, the aelerating terms

of the Æ-� formulation partly ompensate the

deelerating terms of the onventional formu-

lation.

A �nal remark is that the divergene part

of the visous fores anels out in the vor-

tiity equation. Therefore, in the disretized

vortiity equation, the Æ-� formulation leads

to a visous term that takes the form of the

�ve-point Laplaian of the vortiity. This is

not true of the onventional formulation.

4.2.3 Results

By studying F

adv

, we want to address several

issues related to the auray of the di�er-

ent ombinations of the advetion and di�u-

sion formulations and their inuene on the

strength of the overall irulation. Firstly, a

major requirement is that, whatever the ge-

ometry of the basin, F

adv

should onverge to

zero as the resolution goes to in�nity. This

test allows us to rank the performanes of

the model for the di�erent ombinations of

advetive and di�usive shemes. Of partiu-

lar interest will be the importane of the ad-

vetive formulation. A seond onern is to

assess whether the size of the arti�ial soure

or sink of vortiity due to F

adv

inuenes the

overall strength of the gyres. A third onern

relates to the general auray of model vor-

tiity budgets.

To address these issues, we make use of

the oneptual experiment proposed by AM,

in whih a single gyre Munk irulation is
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Model

Advetion

form

Stress

tensor form

A

enstrophy

preserving

advetion

onventional

stress

tensor

formulation

B

enstrophy

preserving

advetion

Æ-� stress

tensor

formulation

C

onventional

advetion

onventional

stress

tensor

formulation

D

onventional

advetion

Æ-� stress

tensor

formulation

Table 4.1: The four ombinations of adve-

tion formulations and stress tensor formula-

tions.

omputed in rotated and non-rotated square

basins. In both ases, all parameters and

foring are unhanged exept for the dis-

retized oastline. The four ombinations

(A, B, C, D) of numerial formulations we

propose to test are detailed in Table 4.1.

One remark onerns the non-rotated basin

results. There, sine the onventional and

Æ-� stress tensor formulations are idential,

the results for the B ombination are identi-

al to the results for A. The same applies for

the C and D ases.

We reprodue the results of AM in Fig-

ure 4.4. This �gure shows the elevation �elds

for the A and B ases and for no rotation and

a small rotation angle of 3.4

o

. Clearly, the A

ase shows irulation patterns ollapsing as

the number of steps along the walls inreases

whereas, for the B ase, the irulation is

quite similar to the original non-rotated ir-

ulation. The results for C are not shown

but are very similar to the results for A. The

results for D show a small inrease in the

strength of the gyre ompared to A, but the

original overall irulation of A-B with no ro-

tation is not reovered (not shown).

Figure 4.5a shows the kineti energy as a

funtion of resolution for the various ombi-

nations and for a rotation angle of 3:4

o

. Only

the B ombination onverges to non-rotated

solutions. The A and C results are almost

idential, but appear to onverge to a kineti

energy that is redued by over a fator of 2

ompared to the non-rotated ases. For the

D ombination, kineti energy dereases and

then tends to slightly inrease with inreas-

ing resolution and is generally muh lower

than for A-B with no rotation or B with ro-

tation.

As mentioned, the �rst onsisteny test re-

lated to the vortiity budget is to verify that

F

adv

onverges to zero with inreasing res-

olution. For all rotation angles onsidered

and for the B ombination, this statement

appears to be true. For the other ombi-

nations (A, C, D), suh is not the ase, at

least for ertain angles. For instane, F

adv

tends to inrease or stay onstant for the A,

C and D ombinations at 3:4

o

(Fig. 4.5b).

For the D ase, F

adv

inreases dramatially

with inreasing resolution |so muh that

F

adv

beomes larger than the wind input.

Assoiated with this is a reverse (negative)

visous ux. This behavior may have on-

sequenes on the stability of the model. Al-

though no obvious numerial instabilities o-

urred for a rotation angle of 3:4

o

, numeri-

al instabilities ause the model to rash for

other angles, for example at �30

o

. It seems

plausible that this behaviour is assoiated

with the large (and opposing) advetive and

di�usive uxes of vortiity near the model

perimeter. In any event, it seems reasonable

to onlude that the D ombination is in-

appropriate. This implies that the Æ-� vis-

ous formulation performs well only when

used is onjuntion with the enstrophy on-

serving advetion. This �nding omplements

that of AM. For the A and C ombinations

(Fig. 4.5b), F

adv

does not onverge toward

zero with inreasing resolution. Hene, these

two ombinations seem inappropriate, even

if the resulting solutions are always stable.

We now address the issue of possible or-

relation between F

adv

and the kineti energy.

Given that inertial runaway (the inability of

simple models of the oean to onverge to

a reasonable statistial mean solution as the

eddy visosity is dereased to the real value

of the visosity found in water) appears to

be related to \diÆulties" in balaning the
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global vortiity budget (Pedlosky, 1996), it

seems reasonable to ask whether the sign of

F

adv

is orrelated with an indiator of the

overall strength of the gyre, suh as total

kineti energy. For example, when F

adv

is

negative, it adds to the wind input of vor-

tiity and one might expet a stronger gyre

to result. Some evidene that this may be

the ase is found by omparing B and D,

whih share the same formulation of the vis-

ous terms. Figure 4.5b shows that F

adv

is

positive and larger for D than is the ase

for ombination B. Thus the total wind plus

advetive input of vortiity to the basin is

stronger in ase B. As might have been an-

tiipated, B shows a more energeti irula-

tion (Fig. 4.5a). It is also interesting to see

whether there is any orrelation between ki-

neti energy and the sign/strength of F

adv

for a given formulation of the numeris. We

restrit this disussion to the use of the B

ombination. From �gures 4.6 and 4.7, whih

show the kineti energy and advetive/wind

vortiity input ratio for a range of resolution

and rotation angles, there does not appear to

be any striking orrelation. In partiular, if

we fous on the region of negative values of

F

adv

(i.e., for a ase where F

adv

has the same

sign as the wind input), the kineti energy

for this region is not larger than the kineti

energy at the same resolution but for an op-

posite angle (in fat, the kineti is slightly

lower). Presumably the added advetive ux

in this region is loally balaned by the vis-

ous terms, so that proesses analogous to

those thought to be responsible for inertial

runaway do not lead to an inrease in the

overall strength of the gyre.

To onlude this setion, we investigate

the general auray of model vortiity bud-

gets with respet to F

adv

using the B om-

bination, only, sine this ombination is the

only one showing a robust onvergene to

zero with inreasing resolution. As F

adv

should ideally not be present in the vorti-

ity budget, the visous ux, F

vis

, an be ei-

ther underestimated or overestimated (whih

modi�es the loal balane at the wall and

therefore the strength of the gyre) and F

adv

an be viewed as an error. From Figure 4.8

and for the range of resolution we used, F

adv

varies between 5% and 50% of the wind in-

put. The order of the onvergene for F

adv

with inreasing resolution is fairly lose to

unity or slightly lower for all positive angles.

For negative angles, we did not ompute the

onvergene order beause F

adv

goes through

a minimum (Figure 4.7) and had not asymp-

toted to an uniform onvergene order at the

highest resolutions we onsidered. A note-

worthy point is that the e�et of inreasing

the rotation angle (introduing more steps)

seems to derease the onvergene order (1/2

at 20

o

). Paradoxially, however, the onver-

gene order inreases again to reah unity for

45

o

, the rotation angle at whih the number

of steps is maximum. In fat, at this angle

F

adv

even shows a negative o�set ompared

to the 0

o

angle.

Exept for e�ets related to step-like

boundaries, that the onvergene order is

unity follows diretly from the order of dis-

retization of the vortiity. Sine the vor-

tiity is one order higher a variable than is

veloity, and sine the veloity is omputed

at seond order auray, it follows that the

vortiity is at best aurate to �rst order.

Therefore, F

adv

an be onsidered an expliit

�rst order (at best) error in the vortiity

budget. For the B ombination, we observe

that the onvergene order for F

adv

varies

between 1/2 and unity, depending on the ro-

tation angle. In the 1/2 order ase, errors (or

disrepanies) vary between 25% (high reso-

lution) and 50% (oarse resolution) and, in

the �rst order ase, they vary between 6%

and 22%. The errors are muh larger for

the other ombinations and an reah 100%.

This implies that the auray of omput-

ing vortiity budgets from primitive equa-

tions models is fairly low, espeially in ab-

sene of attention to the numeris. These

errors may also vary a lot onsiderably with

the disretized domain geometry.

4.3 Vortiity Budgets in SW

B-grid Models

This setion stems from our interest in gen-

eralizing our experiene from C-grid vorti-

ity budgets to the B-grid (see Setion 2.2.2).

Under free-slip boundary onditions, the

main diÆulties arise from the fat that a

prognosti equation for the tangential velo-

ity along the wall has to be solved. This

equation requires values of the pressure gra-

dient along the wall, although the nearest el-

evation points are half a grid ell away in the
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interior. The zero-order solution is to use

the same elevation value as at the nearest

interior point, but this solution yields un-

reasonable shears of the tangential veloity

lose to the wall. In fat, the urrent along

the wall tends to be zero or opposite to the

overall gyre irulation. The problem stems

from a poor representation of the geostrophi

balane along the wall. For the urrent to

be maximal at the wall, the pressure at the

wall has to be larger than the pressure at the

interior points. However, sine the free-slip

boundary ondition yields a zero normal gra-

dient for the tangential veloity, this means

that the seond derivative normal to the wall

of the pressure should be approximately zero.

Therefore, the pressure varies nearly linearly

in the normal diretion to the wall.

We therefore tested a simple linear extrap-

olation, using two interior pressure points.

This approximation gives better results in

the sense that there is no longer opposite

urrents along the wall. However the over-

all solution does not onverge to the solu-

tion obtained with the C-grid model. Af-

ter six years of simulation, the kineti en-

ergy is three times as muh as for the C-

grid model (see Table 4.2). The irulation

is too strong. From a vortiity budget per-

spetive, the model annot ux out the wind

input of vortiity. The reason may ome from

the presene of a pressure term in the vor-

tiity budget whih ats as a torque

1

. This

term should normally be zero. It arises from

the non-anellation of the pressure gradient

terms lose to eah orner of the basin. This

term is negative and therefore ats the same

way as the wind input (see Table 4.2). It

might be that the small disrepany aused

by the presene of this pressure term in the

vortiity budget is enough that the model

annot onverge to a reasonable solution.

Nonetheless, we noted that the magnitude

of this term dereases with resolution and

might explain why the kineti energy tends

to derease with inreasing resolution. Due

to the diÆulty of tuning this free-slip B-grid

model, we quikly gave up the idea of gen-

eralizing the experiments performed in the

previous setions to the B-grid.

We noted however that some authors

takle the problem of the B-grid under

1

The advetive and Coriolis ontribution to the

vortiity is zero for the B-grid. See Appendix B.

�x 20 km 10 km 5 km

K.

Energy

in 10

10

m

5

s

�2

| 2617 2473

FI

in m

2

s

�2

| �0:2647 �0:2606

FO

in m

2

s

�2

| 0:2639 0:2604

Pressure

term in

m

2

s

�2

|

�2:388

�10

�3

�1:238

�10

�3

Table 4.2: Summary of the vortiity budget

and kineti energy diagnostis for the B-grid

after a spin-up of 6 years. Instantaneous val-

ues after a 6 year spin-up. The model vor-

tiity budget on a B-grid inludes a pressure

term due to the non-anellation of the pres-

sure gradient at the orners of the domain.

free-slip boundary onditions. Hsieh et al.

(1983), for instane, suggest the idea of

shifting the whole grid, so that elevation

points are on the boundary instead of ve-

loity points. The trouble then is that we

lose the main advantage of the traditional B-

grid whih is that the region for the vortiity

budget domain is exatly the model domain.

Using the traditional implementation of the

B-grid, there is no advetive ux of vortiity.

More reently, Bekers (1999) proposes to

keep the traditional B-grid and to iterate at

eah time-step in order to get elevation val-

ues at land points lose to the boundary that

yield a zero normal veloity. This solution is

of ourse more expensive. Unfortunately, we

did not try to implement one of these so-

lutions sine our attention was already fo-

used on more omplex numerial methods.

It is suÆient to note that implementation

of free-slip boundary onditions are not triv-

ial on B-grids. This adds to problems en-

ountered with a similar implementation in

a A-grid (see Setion 3.4). Thus the free-slip

boundary ondition does not seem to be suh

an easy ondition to implement in general in

any model.
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4.4 The Quasi-Geostrophi

Model

4.4.1 Disretization

We also investigated the inuene of oast-

line disretization in quasi-geostrophi (QG)

models, although our main interest in this

thesis is foused on the shallow water (SW)

models. QG models solve the vortiity equa-

tion diretly. It seems therefore a reasonable

assumption that these models should yield

more aurate vortiity budgets than do SW

and primitive equation models. The vorti-

ity equation used is

�

t

�+J( ; �)+��

x

 = �r

2

�+k�r�(�=h) ,

(4.24)

where  is the streamfuntion. Equa-

tion 4.24 orresponds to a barotropi and

geostrophi oean with a rigid lid approxi-

mation. The wind foring is altered to in-

lude the inuene of the water depth in or-

der to better mimi the shallow water equa-

tions. The disretization of (4.24) is done

using seond order enter di�erenings. The

streamfuntion formulation (� = r

2

 ) leads

to a linear pentagonal system of equations

to solve at eah time step. We used the sim-

ple leapfrog time integration and the visous

term is disretized by the onventional �ve-

point Laplaian. We are interested in test-

ing di�erent formulations of the Jaobian in

(4.24), as the formulation of this term may

have onsequenes for the vortiity budget

for the same reasons mentioned previously

for the C-grid model.

As for the SW C-grid model, the vortiity

budget for the QG model is de�ned only on

an interior sub-domain, half a grid point in-

side the model basin. This follows from the

fat that the vortiity equation is only solved

at interior points (see Figure 4.1). The dis-

retized vortiity budget is
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(4.25)

where notation is found in Setion 2.2.2 and




�

is the ensemble of indies for points whose

loation lies in the interior domain. By de�n-

ing

F

0

adv

= �

X

ij2


�

J�x�y (4.26)

F

vis

=

X

ij2
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we reast the vortiity budget in the follow-

ing form

X

ij2Æ


�

�

t

��x�y = F

0

adv

+ F



+ F

vis

+ F

i

.

(4.30)

One main harateristi of QG vortiity bud-

gets is the expliit ontribution of the beta

term, F



. This ontribution is hidden in F

adv

for the SW models. Therefore, we de�ne

F

adv

here to be F

adv

= F

0

adv

+ F



, where

F

0

adv

represents the integration of the Jao-

bian term over 


�

. We fous our study on the

behavior of both F

0

adv

and F



. As for the C-

grid model, a minimum requirement is that

F

adv

goes to zero at in�nite resolution. This

also applies to F

0

adv

and F



separately. We

propose to test three di�erent numerial for-

mulations of the Jaobian, J

1

, J

3

and J

7

, as

termed by Arakawa and Lamb (1977) (here-

after, AL77) and investigate their respetive

inuene on the vortiity budget. Other dis-

retization tehniques exist that nullify F



,

suh as that developed by Salmon and Tal-

ley (1989), but we fear that those tehniques

miss the point that the vortiity budget an

not learly be de�ned in the sub-region along

the boundaries. Suh a tehnique may re-

due the atual size of the model domain to

the point that the ritial sub-region disap-

pears.

Representation of the Jaobian in (4.25)

has been extensively onsidered by Arakawa

(1966) and AL77. From the latter, we bor-

row the notation J

i

, where J is the dis-

retized Jaobian and i takes values between

1 to 7, depending on the disretized formu-

lation. The simplest representation is the J

1
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Jaobian, where

J

1

= D

o

x

�D

o

y

 �D

o

y

�D

o

x

 . (4.31)

J

1

onserves relative vortiity in doubly peri-

odi domains, straight hannels and retan-

gular domains when the free-slip boundary

ondition is applied. In fat, F

0

adv

is zero

for zero rotation angle beause  and � are

both zero at the boundary. However, due to

its poor onservation properties (energy and

enstrophy), other forms of the Jaobian have

been suggested.

AL77 proposed the J

3

form of the Jao-

bian whih onserves energy in doubly peri-

odi domains

J

3

= D

o

x

(�D

o

y

 )�D

o

y

(�D

o

x

 ) . (4.32)

The J

3

Jaobian onserves relative vortiity

in doubly periodi domains, but not in pres-

ene of boundaries. The boundary terms

that arise are relatively easy to pinpoint.

They orrespond to the value �D

o

y

 or �D

o

x

 

at loations one grid point away from the

boundaries.

It is interesting to note that the J

3

for-

mulation is similar in struture to the adve-

tive terms in the SW vortiity equation when

the B ombination, disussed above, is em-

ployed. For example, if we take u

�

= �D

o

y

 

and v

�

= D

o

x

 , then J

3

an be reast as J

3

=

D

o

x

(�u

�

) +D

o

y

(�v

�

). The advetive term for

the B ombination in the vortiity equation

takes the form of D

o

x

(q

y

V

x

y

) + D

o

y

(q

x

U

x

y

).

Hene the two formulations use a divergene

form of the advetion. Moreover, the vis-

ous term in the SW vortiity equation de-

rived using the Æ-� stress tensor formulation

is similar to the visous term in the QG equa-

tion. Spei�ally, both take the form of a

�ve-point Laplaian of vortiity. Hene, we

expet that the results of the J

3

-QG model

should be similar to those of the SW model

using the B ombination. Unfortunately,

there is no straight forward analog between

the onventional advetion for C-grid and

any of the Jaobian operators suggested by

AL77. Therefore, we did not note any other

possible onnetions between spei� aspets

of the QG and the SW numerial formula-

tions.

The last Jaobian formulation we propose

to test is the J

7

and may be given as

J

7 ij

=

1

12�x�y

[

�

i+1;j

( 

i;j�1

+  

i+1;j�1

�  

i;j+1

�  

i+1;j+1

)

��

i�1;j

( 

i�1;j�1

+  

i;j�1

�  

i�1;j+1

�  

i;j+1

)

+�

i;j+1

( 

i+1;j

+  

i+1;j+1

�  

i�1;j

�  

i�1;j+1

)

��

i;j�1

( 

i+1;j�1

+  

i+1;j

�  

i�1;j�1

�  

i�1;j

)

+�

i+1;j+1

( 

i+1;j

�  

i;j+1

)

��

i�1;j�1

( 

i;j�1

�  

i�1;j

)

+�

i�1;j+1

( 

i;j+1

�  

i�1;j

)

��

i+1;j�1

( 

i+1;j

�  

i;j�1

)℄

(4.33)

This more intriate formulation (Arakawa,

1966) is known to onserve both the en-

ergy and the enstrophy in doubly-periodi

domains. The J

7

Jaobian also onserves

relative vortiity in doubly periodi domain,

but not in losed domains where ompliated

boundary terms in F

0

adv

arise. This formula-

tion is very popular and is adopted in most

QG models.

4.4.2 Results

Using J

1

, the solutions are very di�erent

for positive and negative values of the rota-

tion angle of the basin. Positive angles are

haraterized by larger kineti energy and

stronger osillations of a Rossby basin mode

(urve b of Figure 4.9), whih appears to be

unstable at low resolution. However, with in-

reasing resolution (urves d-f of Figure 4.9),

the kineti energy for both positive and neg-

ative angles seems to onverge to the value

of kineti energy for the non-rotated basin

ases (urves a,d). Nonetheless, we prefer to

disard this formulation of the Jaobian for

the rest of the disussion, due to its low level

of auray at moderate resolutions.

On the other hand, solutions using J

3

and

J

7

appear stable and onverge reasonably

well with inreasing resolution to the same

value of kineti energy, for both rotated and

non-rotated basins (Fig. 4.10). Therefore,

this results ontrasts with those of the SW

model for whih the onvergene was only
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obtained for the B ombination. The QG

model appears to be less sensitive to grid ro-

tations and advetive formulations.

In terms of vortiity budget, we are inter-

ested in the behavior of the advetive ontri-

bution, F

adv

, with inreasing resolution for

the J

3

and the J

7

Jaobians. Spei�ally, we

are interested in how the onvergene order

for F

adv

di�ers in the QG model ompared to

the SW model. As mentioned, F

adv

is made

of two independent ontributions, F

0

adv

and

F



. F

0

adv

depends diretly on the Jaobian

formulation but F



does not. Figure 4.11

shows the onvergene of F

0

adv

in rotated and

non-rotated basins for the two onsidered Ja-

obians. F

0

adv

is lose to seond order in non-

rotated basins for both Jaobians. At 30

o

rotation, however, the onvergene order is

loser to unity for J

3

but seond order for

J

7

.

We now analyze the onvergene order for

F



, the seond ontribution to F

adv

. Fig-

ure 4.12 shows the onvergene for F



in ro-

tated and non-rotated basins under J

3

and

J

7

. The results appear independent of the

Jaobian formulation, as expeted. The on-

vergene order is however unity, in ontrast

with results for F

0

adv

. This result omes read-

ily from the traditional treatment of the �

term. The proof is given in a square domain:

�

X

ij2Æ


�

D

o

x

 �x�y =

�

X

j

i=n

x

�1

X

i=2

 

i+1

�  

i�1

2�x

�x�y =

�

X

j

 

n

x

�1

�  

2

2

�y ,

(4.34)

sine  

1

=  

n

x

= 0, by de�nition of no-

permeability. The west-east asymmetry due

to the beta e�et imposes that  

n

x

�1

= a 

2

with 0 < a < 1 and all other parameters kept

onstant. The fator, a, represents the ratio

of the veloity along west and east oastline.

Beause  

n

x

�1

and  

2

onverge linearly to

zero with inreasing resolution, the beta on-

tribution annot have a better onvergene

rate than one. In absolute value, F



is also

larger than F

0

adv

. Therefore, F

adv

su�ers pri-

marily from the low onvergene rate of the

beta ontribution, F



. One an ask whether

we an get a better onvergene order by

inluding the planetary vortiity, �y in the

Jaobian instead of treating it separately

(J( ; �+�y) instead of J( ; �)+��

x

 ). We

onduted this experiment with the best ad-

vetive formulation, the J

7

. However, on-

vergene order of F

adv

is again unity and er-

rors are very similar to the previous ase (not

shown).

One last point we would like to make is

related to similarities mentioned above, be-

tween the J

3

-QG and the B ombination of

the SW model. Figure 4.14 shows F

0

adv

, F



and F

adv

with inreasing resolution for J

3

and under -30

o

rotation angle. F

0

adv

is neg-

ative, goes through an minimum and, then

inreases toward zero, whereas F



is positive

and dereasing to zero. Hene, F

adv

appears

to go through a pool of negative values, just

as the B results showed. This ontrasts with

results using J

7

for whih F

0

adv

takes positive

values for both negative and positive rotation

angle (not shown).

To onlude, exept for the J

1

Jaobian,

the QG model is less sensitive to the basin

rotation, in ontrast with results for the SW

model. Convergene orders for the adve-

tive ux of vortiity, F

adv

, on the other hand,

are order 1 or less|omparable to what was

found for the SW simulations. In the QG

ase, this low order of onvergene is related

to the beta ontribution, F



. Using J

7

, jF

adv

j

varies between 5% (high resolution) and 20%

(oarse resolution) of the wind input depend-

ing on the rotation angle. These results are

somewhat better than those obtained in the

SW simulations.

4.5 Disussion and Conlu-

sion

Due to their fratal nature, realisti oast-

lines have features down to the model reso-

lution. While the ultimate goal would be to

orretly aount for suh features in models,

a less stringent test is that models should

be able to deal with simple geometries, in

a manner that is not sensitive to arti�ial

steps introdued by the disretization. Suh

was the study of AM, based on free-slip sin-

gle gyre Munk experiments. As we noted
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that there was an inonsisteny in the dis-

retized vortiity budget for the C-grid shal-

low water model, we deided to revisit the

AM results in terms of global vortiity bud-

gets with varying resolution. Our goal was

to investigate the inuene of the formula-

tion of the advetive and visous terms on

the model vortiity budget and the overall

strength of the gyre.

AM showed that the onventional visous

stress tensor formulation was inappropriate

in the rotated basin ase, for steps our-

ring along the oast. Moreover, they made

use of an alternative stress tensor formula-

tion (alled herein Æ-� tensor) and showed

improved results. We analyzed further the

di�erene between onventional and Æ-� ten-

sor formulation along with two di�erent for-

mulations of the advetion in the momentum

equations in term of global vortiity budgets

with varying resolution. One observation is

that the results with the Æ-� stress tensor

depend strongly on the formulation of the

advetion, as the onventional advetion for-

mulation leads to instability (the D ombina-

tion). Therefore, the formulation of the ad-

vetion seems equally important in explain-

ing the AM results. In terms of vortiity bud-

gets, all ombinations seem to be ill-behaved

exept for the enstrophy onserving adve-

tion and the Æ-� tensor (the B ombination).

For this ombination, the onvergene order

for F

adv

is about unity, following the truna-

tion order of the vortiity when derived from

seond order veloity.

For the QG model, the overall irulation

is less sensitive to the rotation of basin for all

Jaobians we tried. In order of inreasing a-

uray, J

1

gives the lowest level of auray

(showing even signs of instability at low reso-

lution), followed by J

3

and then J

7

. The best

onvergene order for F

0

adv

was obtained by

using the J

7

Jaobian and was about 2, for

all rotation angles. The beta ontribution,

F



, is independent of the formulation of the

Jaobian. Its onvergene order is very lose

to unity and its magnitude is usually larger

than that of F

0

adv

. Therefore, most of the

disrepany between the real and the model

vortiity budgets is onentrated in the beta

ontribution at suÆiently high resolution.

Hene, in order to make aurate vortiity

budgets, it follows that the beta ontribution

should be more aurately omputed. One

possibility is to inrease the order of the �-

nite di�erening operator for the beta term,

��

y

 . Finally, the hypothesis that the J

3

-

QG model would give similar results om-

pared to the enstrophy onserving advetion

and the Æ-� tensor C-grid model was veri�ed.

From the general point of view of om-

puting vortiity budgets from �nite di�er-

ene models, both QG and C-grid models

show the same relatively slow onvergene

order (about unity) of the disrepany with

inreasing resolution between the real and

the model vortiity budgets. For the range

of resolution onsidered, and depending on

the model type (SW or QG), numerial for-

mulations and the rotation angle (or more

generally, basin geometry), this error an be

estimated to vary between 5% to 50%.

As for the general auray of FD models

in presene of steps for wind-driven irula-

tions under free-slip, the rotated square basin

experiments show that the B ombination for

the C-grid model and the J

3

or J

7

for QG

model give satisfatory results. We were not

able to get satisfatory results out of a on-

ventional B-grid model, though. This spatial

staggering of veloity and elevation does not

seem to suit very well the free-slip boundary

ondition, even in presene of straight walls.

The next hapter onsiders the more general

ase of a smoothly varying oastline for the

Munk problem.
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Figure 4.1: Loations of variables near a step

for the SW C-grid model (left panel) and for the

quasi-geostrophi (QG) model (right panel). For

the SW model, dashed squares are the boundary

normal veloity nodes, white disks are the vorti-

ity nodes where the relative vortiity is spei�ed

to be zero and blak disks are the vortiity nodes

for whih a disretized vortiity equation an be

written. In grey is the region delimiting the vor-

tiity budget domain. This region does not ex-

tend to the model boundary. Instead, there is an

half ell band around the boundary (left in white)

where we annot derive any budget. A similar

problem exists for the QG approximation.
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Figure 4.2: Loal advetive ux along the

boundary (C ��l=jj�ljj) at 20 km resolution in a

square basin for the enstrophy onserving formu-

lation of the advetion using the B ombination

of Table 4.1. The heavy-lined urve is for no ro-

tation of the basin, the light-lined urve is for

a small angle rotation of the basin (3:4

o

) with

respet to the grid. Due to the rotation angle,

4 steps our along eah side of the square and

ause abrupt hanges in the loal advetive ux.
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Figure 4.3: Northward ow past a forward step.

The shaded area is the model domain. We on-

sider only the two momentum nodes for whih the

Æ-� formulation di�ers from the onventional for-

mulation. The �-point at the tip of the ontinent

has (i; j + 1) indies. Arrows indiate diretion

of the ow.
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Figure 4.4: Elevation �elds in meters after a 6 year spin-up for 20 km and 10 km resolution. Shown

are results from the A and B ombination (Table 4.1) with or without a 3:44

o

rotation angle of the

basin. Note that the B ase tends to resemble the A-B ase with no rotation, but not the A ase.
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Figure 4.6: Kineti energy after spin-up for

the B ombination in 10

10

m

5

/s
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.

Figure 4.7: Ratio of F

adv

to F

i

for the B

ombination.

0.01

0.1

1

0.05 0.1 0.15 0.2

F
lu

x 
in

 r
at

io

Resolution 1/DX (1/km)

 -1 slope

no rotation
rotation 20, AM diff
rotation 45, AM diff
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1
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Figure 4.12: Ratio of F



to the wind input. (a-

d) as desribed in Fig. 4.10.
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o

rotation angle. F

adv

=

F

0

adv

+F



is negative at this rotation angle, sim-

ilarly to results obtained for the B ombination.



Chapter 5

Single Gyre Cirulation in

Irregular Domains

In this hapter, we explore the issue of

the inertial runaway (to be de�ned below)

for the single gyre Munk problem with free-

slip boundary onditions from two perspe-

tives: saling arguments and numerial sim-

ulations using the spetral element model.

In the previous hapters, we investigated the

auray of di�erent numerial methods and

found that the spetral element (SE) model

o�ers high auray in irregular domains and

nonlinear ows, whereas the other methods

present various limitations. This hapter is

both an appliation of the SE method and

a ontribution to the understanding of the

runaway problem.

5.1 Review of the Single

Gyre Problem with Free-

Slip Boundary Condi-

tions

As stressed by Pedlosky (1996), the single

gyre (as opposed to the double gyre) Munk

irulation faes the unique hallenge that, in

terms of vortiity budget, all the wind input

has to be uxed out of the domain by means

of the visous ux in order to yield a steady

or statistial mean solution. At equilibrium,

the vortiity budget beomes:

I

�

h

� dl+ �

I

��

�n

dl = 0 . (5.1)

To be preise, we refer to the single subtropi-

al (anti-yloni) gyre problem in the north-

ern hemisphere for the single gyre problem.

In that partiular ase, the wind input to the

vortiity budget, the �rst term in (5.1), is

negative. Although the single gyre problem

is extreme in that the vortiity input is one-

signed, most people onsider the double gyre

problem (i.e., when the foring integrates to

zero) to be a speial ase. There is typially a

net vortiity input of one sign or another into

the oean, and therefore, in the generi ase,

the system needs to dissipate some vortiity.

The single gyre problem is ertainly extreme,

but it is argued after that some of its hara-

teristis make this problem even more inter-

esting and hallenging. Moreover, for the sin-

gle gyre foring, there is a strong orrespon-

dene between the diÆulty of balaning the

vortiity budget and the strength of the over-

all irulation, sine the seond term in (5.1)

links the magnitude of the eddy-visosity, �,

to the importane of the normal derivative

of the vortiity. This derivative is related to

the strength of the irulation. As � is re-

dued, the integral of the derivative must be

augmented in proportion to yield an equiva-

lent balane. The diÆulty of balaning the

vortiity budget is also dependent on the dy-

namial boundary ondition. The vortiity

balane is more diÆult to ahieve when free-

slip boundary onditions are employed, as

opposed to no-slip. Using free-slip onditions

(see Chapter 1), the vortiity at the bound-

ary is zero along straight walls and, under

no-slip, it an reah large positive values,

whereas the vortiity is mainly negative in

the interior due to the negative wind input.

Therefore the normal derivative of the vor-

tiity, ��=�n, is muh higher in the no-slip

ase than in the free-slip ase, uxing more

easily the vortiity through the boundaries.

64
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This enables gyres under no-slip to ahieve

weaker irulations ompared to gyres under

free-slip.

The importane of the nonlinear terms

with respet to the visous fores is om-

monly saled by the Reynolds number, R

e

.

For Munk irulations, it is more onvenient

to relate the Reynolds number to the dynam-

is of the boundary layer (see Pedlosky). R

e

is therefore de�ned as

R

e

=

�

Æ

I

Æ

M

�

3

(5.2)

where Æ

M

and Æ

I

are respetively the Munk

and inertial numbers. They are de�ned as

Æ

M

=

�

�

�L

3

�

1=3

; Æ

I

=

�

V

Sv

�L

2

�

1=2

, (5.3)

where V

Sv

is the Sverdrup veloity and L

is the width of the basin. In saling ar-

guments, V

Sv

is usually taken as the max-

imum value observed in the interior away

from the boundary layers. We prefer to use

the mean value of the V

Sv

whih an be ob-

tained by integrating the Sverdrup relation

over the whole domain exept for the bound-

ary layers/footnoteThis hoie is motivated

by the quantitative estimations of oming

Setion 5.4 whih are based on vortiity bud-

gets arguments and are better approximated

by using the mean rather than the maximal

Sverdrup veloity. There is also a a poste-

riori and osmeti argument related to the

fat that the transition between the Sverdrup

interior solution to a Fofono�-type interior

solution (explained at the end of this para-

graph) ours at R

e

� 1 if a mean Sverdrup

veloity is hosen but will our at Re � 4 if

the maximum Sverdrup veloity is hosen.:

V

Sv

=

1

�L

2

I

�

h

� dl . (5.4)

For the wind foring under onsideration,

� = 1:6 � 10

�11

m

�1

s

�1

and assuming that

h � H along the walls, the mean V

Sv

is ap-

proximately 1:25�10

�2

m/s. This hoie will

lead to smaller values of R

e

when ompared

to other authors' results. Another impor-

tant remark onerns the physial meaning

of these two numbers. Æ

M

and Æ

I

, multiplied

by the width of the basin, L, yield respe-

tively the thikness of the Munk and iner-

tial layers. These are the lengths at whih

the vortiity varies in order to yield a bal-

ane between the visous terms and the beta

term, and a balane between the advetion

and the beta term, respetively. The Munk

layer exists only for weak nonlinear terms.

When these nonlinear terms are large enough

(R

e

� 1 and beyond), the inertial boundary

layer prevails along the western boundary. In

suh a ase, the Munk layer is replaed by a

visous sublayer whose thikness is given by

LÆ

0

M

where

Æ

0

M

=

Æ

I

p

R

e

. (5.5)

Æ

0

M

omes from the evaluation of the bal-

ane between the advetion and the visous

terms. These nonlinearities, and the pres-

ene of the inertial layer, introdue more dif-

�ulties in ahieving a vortiity balane. For

instane, in the absene of eddies, the inertial

layer inhibits the transport of vortiity from

the interior to the walls beause, there, the

streamlines and absolute vortiity ontours

are nearly parallel. Therefore, the negative

input of vortiity in the interior of the oean

annot be easily uxed out. This favors an

even more inertial and energeti interior ow

and, when the Reynolds number is beyond a

ritial value, a Fofono�-type gyre develops

(as opposed to a Sverdrup interior) with un-

realistily large speeds of the order of 50 m/s.

This is the so-alled inertial runaway prob-

lem. Aording to Pedlosky, this senario

also ours in the presene of no-slip bound-

ary onditions, the no-slip only retarding the

ourrene of the jump to the highly ener-

geti branh (where the Fofono�-type gyre

lies). Moreover, he states that the inertial

runaway is not just a feature of steady so-

lutions but is prone to appear in unsteady

solutions, as well.

Indeed, Ierley and Sheremet (1995) ob-

serve this runaway senario for the free-slip

ondition in steady and unsteady irula-

tions in retangular domains for single gyre

foring. Under free-slip, there is no di�er-

ene between unsteady and steady solutions

beause the eddy ativity is very weak in un-

steady solutions. However, no-slip steady

and unsteady solutions are usually di�er-

ent. Nonetheless, Sheremet et al. (1997)

demonstrate that the same runaway prob-

lem ours in retangular domains when the

no-slip ondition is applied to the western

and eastern walls (repeating the experimen-

tal setup of Bryan, 1963). They note that,
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after the unsteady and steady solutions �rst

depart, the strength of the irulation does

not inrease with inreasing Reynolds num-

ber beause the eddies eÆiently remove the

exess of vortiity produed in the bound-

ary layer. However, past a ritial Reynolds

number, they note that the mean irula-

tion strengthens again, the eddies being no

longer eÆient in removing the exess of vor-

tiity. Veronis (1966) for the single gyre and

Primeau (1998) for the double gyre demon-

strate that the runaway senario is also ob-

served for bottom frition only models. Ped-

losky (1996, p87) and Ierley and Sheremet

are onvined that their runaway senario

is universal, based on their experiene with

strati�ed quasi-geostrophi (QG) unsteady

simulations in idealized geometries. Aord-

ing to them, no onvergene of the statistial

steady state an be ahieved with inreas-

ing Reynolds number, whatever the type of

boundary onditions. Of ourse, the latter

argument onits with our day-to-day expe-

riene. As far as we know, the Gulf Stream

irulation has not blown up! Nonetheless,

these authors bring strong numerial evi-

denes in favor of their arguments. There-

fore, where is the aw ?

From the perspetive of time-dependent

simulations, one aspet of the results of

Sheremet et al. (1997) remains question-

able. This is related to the use of no-slip

boundary onditions in unsteady solutions.

The fat that no-slip irulations are prone

to barotropi instabilities annot be under-

estimated from the point of view of the iner-

tial runaway. These instabilities may be suf-

�ient to produe eddies whih would trans-

port the vortiity through the inertial layer

to the visous sub-layer, where it an be

uxed aross the wall. However, no-slip ir-

ulations are very demanding in terms of

omputer resoures and, therefore, the issue

is still unresolved. One possibility is that we

still need more resolution (to ahieve larger

R

e

) in unsteady no-slip irulations. A se-

ond possibility is related to the use of overly

idealized geometries in the aforementioned

results. Finally, a third possibility is that

the models used in those results are too sim-

ple. From this last point of view, we may

lak ertain physial proesses whih are im-

portant for the downward asade of energy.

In favor of this argument, Sott and Straub

(1998) noted that, under no-slip, the Rossby

number (whih sales the nonlinear terms to

the Coriolis fores) inreases quikly with in-

reasing Reynolds number. Sine the QG

approximation applies only for small Rossby

number, R

o

, large R

o

means that the rather

inexpensive QG models annot be used for

even suh idealized experiments, but have to

be replaed by, at a minimum, more ostly

shallow water models.

1
n

s

s

0s

e s

ne

s

0n
1n

2n

2

Figure 5.1: Notation orresponding to the

urvilinear oordinates.

In favor of these three arguments, reent

high resolution (1/4 to 1/64 degree) simula-

tions of the Atlanti were onduted using

the MICOM model (i.e., an isopynal prim-

itive equation model) and showed that the

mean irulation onverges to a more and

more realisti state with inreasing Reynolds

number (Hulburt and Hogan, 2000). The

eddy-visosity was lowered from 100 to 3

m

2

/s. The problem with this kind of experi-

ment is that it is diÆult to distinguish whih

physial proesses or tehnial details are

neessary to obtain the onvergene with in-

reasing Reynolds number. We believe that

one important distintion omes from the

geometry. Theoretiians typially fous on

retangular domains whereas primitive equa-

tions models are generally run in more real-

isti geometries. Irregular geometries may

be suÆient by themselves to provide the

neessary soure of eddies in order to get

weaker and more realisti irulations at high
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Reynolds number. An irregular geometry|

espeially irregular along the western oast-

line where the urrents are the strongest|

may also provide stronger interations be-

tween geostrophi and ageostrophi modes,

and hene may failitate a forward energy

asade. The latter proess is absent from

idealized early experiments whih are based

on the QG equation. Thus, the shallow wa-

ter equations are a good starting point for

our investigation. Furthermore, we believe

that having irregular boundaries is more im-

portant than the hoie on the type of dy-

namial boundary onditions. In the ontext

of the double gyre foring of the Munk prob-

lem, Sott and Straub (1998) show that the

inrease in kineti energy of non-symmetrial

steady solutions and time-dependent mean

solutions tends to level o� as the Reynolds

number inreases for the two boundary on-

ditions. Therefore, the idealized double gyre

experiment where the wind input to the vor-

tiity budget anels may exhibit less se-

vere inertial runaway. Contraditory evi-

dene against inertial runaway has yet to

be found in single gyre irulations where

the wind input of vortiity is single signed.

Therefore, we will ondut experiments using

the free-slip boundary ondition sine many

evidenes exist for a robust inertial runaway

under free-slip in retangular basins. In fat,

under the free-slip boundary ondition, irreg-

ular boundaries are the only way to produe

positive vortiity whih is essential to the

prodution of eddies. The vortiity an be

expressed using urvilinear oordinates fol-

lowing the wall as

� =

�v

s

�n

�

�v

n

�s

+

v

s

R

s

�

v

n

R

n

, (5.6)

where (s; n) are respetively the oordinate

along and normal to the wall, v

s

and v

n

are

the veloity omponents respetively along

s and n and R

s

and R

n

are the respetive

radii of urvature of the axes along the wall

and normal to the wall. (notation is shown

in Figure 5.1). Right at the wall and under

the free-slip boundary ondition (as de�ned

in Chapter 1), the equation redues to

� =

v

s

R

s

. (5.7)

If the veloity at the wall is lose to 1 m/s

and the radius of urvature along the wall is

of the order of the 10 km, � is of the order

of 10

�4

s

�1

, that is, of the order of f

0

1

.

One way to evaluate the Rossby number is to

measure the ratio of �=f

0

. Therefore, if the

radius of urvature is of the order of 10 km,

we an obtain Rossby numbers of the order

of unity; that is, well beyond the range for

whih the QG approximation applies. This

stresses again the need to use the primitive

equations. 10 km is also somewhat below the

radius of deformation for the �rst barolini

mode given the value of the parameters we

use (L

R

� 31 km). This means for instane

that Kelvin waves may enounter diÆulties

in going around suh geometrial features.

5.2 Model Seletion and Ex-

perimental Design

In order to test these arguments, we on-

sider the following experiment. The set-up

onsists of wind-driven irulations in �ve

di�erent geometries (Figure 5.2). The �rst

is a irular geometry with the radius given

by L



= 500 km. The seond is a pertur-

bation of the �rst geometry by the addition

of a wavy pattern along the oastline in the

form of a sine wave. We hoose the wave

length to be a 1/16 of the perimeter. The

amplitude of the sine wave from a rest to a

trough is 12.5 km. The third geometry is the

same one exept that the amplitude of the

sine perturbation is 25 km. The amplitude

for the fourth and the �fth is respetively

50 and 100 km. The radius of urvature was

omputed using the simple relation:

�e

s

�s

= �

1

R

s

e

n

(5.8)

where e

s

and e

n

are the orthonormal unit

vetors assoiated with the diretions s and

n. For a sine wave given by y = h

0

sin(kx)

the minimum radius of urvature is given by

1

R

s

= h

0

k

2

(5.9)

1

Using Pedlosky's de�nition for free-slip instead

of the urrent one, as de�ned in Chapter 1, the rela-

tive vortiity an reah larger values. If a uid par-

el passes east of a obstale and ows antilokwise

around it in a steady state, we have �u=�y < 0.

Using the mass onservation equation, this leads to

�v=�x > 0. Therefore, aording to (5.6), � > V=R

s

,

i.e., the vortiity is larger.
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Figure 5.2: The �ve geometries used for our

appliation of the SE method. The irle is

deformed by super-imposition of a oastal os-

illation of the form of a sine wave. For Ge-

ometry V, we label the bumps for later refer-

ene starting from the �rst bump west of the

north-south axis passing through the enter

of the basin and we then proeed antilok-

wise. The same labeling applies for the other

geometries.

In the ontext of the irular geometry, we

an orret the radius by using the relation:

1

R

s

= h

0

k

2

+

1

L



(5.10)

Hene, the minimum radius of urvature for

the seond geometry is about 160 km and

80 km, 40 km and 20 km for the third,

fourth and �fth geometries. We use three

values of the eddy-visosity (� = 700, 300,

100 m

2

s

�2

). The wind-foring is the same

as applied in the previous hapter for single

gyre Munk problem. The Reynolds bound-

ary number ranges therefore from 0.5 to 3.5.

For omparison, Sott and Straub (1998)

reahed impressive values of about 35 for

double gyre steady irulations with a QG

model. In ontrast, our maximum ahieved

value of R

e

= 3:5 is lower. However, in the

ontext of unsteady solutions in irregular ge-

ometries using a shallow water redued grav-

ity model and due to our de�nition of V

Sv

,

this an be onsidered a high value. The in-

ertial layer width is about 28 km whereas the

visous sublayer width varies from 40 km to

15 km. Therefore, we expet that the pro-

esses are mostly nonlinear. Sine we are

interested in the mean states of the iru-

lation, when possible, we performed six year

averages of the �elds after a statistial steady

state has been reahed. This period is lim-

ited by omputer resoures. It is a bit short

sine six years represent only twie the time

for a Rossby wave to ross the basin. How-

ever, we do not believe that these results

would signi�antly di�er for longer averag-

ing period.

We �rst ompare the results from the C-

grid FD model using the promising Æ-� stress

tensor formulation and the enstrophy on-

serving sheme (the B ombination of Se-

tion 4.2.2) with those of the C-grid using

the same advetive sheme and the onven-

tional stress tensor formulation (the A om-

bination of Setion 4.2.2). Figure 5.3 shows

the elevation �elds after a 3 year spin-up for

� = 100 m

2

s

�1

. The irulation of the B

ombination is muh more inertial than the

irulation of the A ombination. Further-

more (but not shown), the vortiity �elds are

very noisy in both ases. The B ombination

run is stopped shortly after the third year

of simulation beause of the depletion of the

water olumn along the boundaries (h < 0).

Figure 5.4 shows the total energy for both
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ombinations and the SE model. We on-

sider the SE results to be the \truth". We

note that the A ombination is too dissipa-

tive and that the B ombination is not dis-

sipative enough. The A ombination is for

this geometry the ombination losest to the

SE results. That the B ombination is not

dissipative enough an be related to the fat

that this partiular on�guration of the C-

grid model spei�es the vortiity to be zero

at the wall and therefore, does not take into

aount the inuene of the radius of urva-

ture. Therefore, although the B ombination

was suessful in the presene of steps in a

retangular geometry (where free-slip implies

� = 0), this ombination is no longer suess-

ful in the general ase of an irregular geom-

etry where the vortiity an be non-zero at

the walls.

A better way to implement the boundary

ondition in the FD model might be to take

into aount the urvature of the boundary,

as we do in the SE model. This would re-

quire omputing for eah veloity node lose

to the boundary a series of oeÆients asso-

iated to nearby veloity points in order to

extrapolate the normal derivative of the tan-

gential veloity along the wall (i.e., a general-

ization of the o�-entered two point operator

used in Setion 2.2.2 for enforing free-slip

along straight walls.) The C-grid however

does not easily allow for suh an implementa-

tion. One limitation omes from the fat that

the veloity omponents are not disretized

at the same loation. This implies interpola-

tions bak and forth from the global oordi-

nates to the loal urvilinear oordinates of

the omponents of veloity. This sort of two-

way interpolation is damaging to the overall

auray. Leakage of mass from the om-

putational domain is also a possibility that

ould a�et the auray.

We therefore need a model whih repre-

sents more aurately the e�ets of the walls.

The SE model seems to be a good andidate.

A seond order FE model, whih satis�es the

LBB stability ondition and whih is based

on the Eulerian time desription, may be su-

essful in this appliation as well. However,

from Chapter 3, the SE model would o�er a

robust and faster onvergene with inreas-

ing resolution at a more reasonable ost.
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Figure 5.3: Elevation �elds in the Geometry

V for the C-grid model after 3 years of spin-

up. On top, the A Combination, at bottom,

the B ombination.
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5.3 Results

5.3.1 General Results for all Ge-

ometries

In Figure 5.5, we show the di�erent statisti-

al mean irulations obtained in the �ve at-

tempted geometries. An \X" marks when a

statistial mean ould not be reahed. Suh

is the ase when the solution jumps to the

high energy branh. When this ours, the

sea level tilt implied through geostrophi bal-

ane by the unreasonably strong urrents

quikly leads to zero layer thikness, at whih

point the integration is halted. This happens

for the intermediate and high R

e

in the Ge-

ometry I and II and for high R

e

in Geome-

tries III and IV. We ahieve a reasonable sta-

tistial mean for all onsidered R

e

in Geome-

try V. As the Reynolds number is inreased,

the reirulation tends to move eastward and

northward and strengthens. In Geometry V,

the reirulation is nearly round, whereas, it

is more elongated for the other geometries.

The other interesting point to note in Ge-

ometry V is related to the position of the

reirulation relative to the bumps. Between

R

e

= 0:5 and R

e

= 1:2, the reirulation

strengthens, but is somewhat trapped be-

tween Bumps 2-3. However, at R

e

= 3:5, it

jumps to the next indentation (Bumps 1-2;

see labeling in Figure 5.2). The general re-

sult is therefore that the presene of bumps

along the oastline inhibits and retards the

jump to the high energy branh for the Munk

problem with free-slip boundary ondition.

However, the radius of urvature of the oast-

line has to be fairly small (i.e., smaller than

the radius of deformation) in order to ahieve

reasonable irulations under high Reynolds

numbers.

What is of interest is the vortiity stru-

ture for all these geometries. Figure 5.6

shows the relative vortiity �eld for Geom-

etry IV and V and for di�erent Reynolds

numbers. One general harateristi is that

these �elds are less smooth than those for

the stream funtion or the elevation �eld.

This relates to the fat that the vortiity

orresponds to the seond order derivatives

of the stream funtion. The vortiity �eld

is therefore noisier and more diÆult to re-

solve. Nonetheless, the results from the SE

model are very enouraging when ompared

to those obtained from �nite element mod-

els for whih the vortiity �elds are gener-

ally muh noisier. One basi feature is that

the vortiity approximates the form of a pos-

itive Dira delta funtion lose to the tip of

the bumps. Therefore, dynamial proesses

lose to the tip are rather omplex, irregular

and diÆult to resolve using a high order for-

mulation. However, the use of a disontinu-

ous SE formulation seems to be of some help

in resolving these irregularities by not prop-

agating them to neighboring elements. The

largest peaks are observed where the veloity

is the largest. The magnitude of these peaks

ranges between 10

�5

and 10

�4

s

�1

. Where

the magnitude of these peaks goes beyond

10

�5

, a tail of positive vortiity forms down-

stream of the peaks. Hene, the exess of

positive vortiity is advetively transported

downstream. Of ourse, these peaks inrease

the loal gradient of vortiity pointing out-

ward. They are therefore diretly related

to the mehanism whih balanes the vor-

tiity budget and limits the size of the reir-

ulation. Furthermore, we note that a pos-

itive vortiity wall surrounds the reirula-

tion zone. This wall is onsistent with the

presene of a region of low veloity outside

the reirulation zone (i.e., a region of strong

shear). We note also that, for Geometry V

and R

e

= 3:5, a thin �lament of large neg-

ative vortiity is loated near the western

boundary. An important remark onerns

the Rossby number, R

o

in the presene of

bumps. By measuring the ratio �=f

0

, we note

that R

o

is above 0.1 for Geometry III and

reahes about unity for Geometry V. As pre-

dited, R

o

an be fairly large in the presene

of bumps whih invalidates the QG approxi-

mation.

We also show the power input (the rate of

energy put in by the wind), P , in Figure 5.7.

P desribes how the irulation adjusts to

the wind pattern in order to minimize its en-

ergy. In general, it shows that the inrease in

P is muh less than that in R

e

. This means

that the irulation adjusts in suh a way

that reduing � by a fator of two does not

lead to a doubling of P . It would be interest-

ing to verify if some simple saling arguments

reprodue this result. However, it is diÆult

to derive a saling for P sine it annot be

estimated on boundary layer onsiderations

alone but requires also the knowledge of the

interior irulation. The �gure shows that
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Figure 5.6: Mean vortiity �eld for the Geometries IV and V using the SE model. When

no steady state ould be reahed beause the solution jumps to the high energeti branh,

an 'X' is draw instead. The inuene of the bumps is learly seen by the abrupt jump in

the vortiity �eld.
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the rate of inrease is larger for the regu-

lar geometry than for the irregular geome-

tries. In fat, the rate of inrease is rather

similar for the two irregular geometries, al-

though there is a general shift toward lower

values of P as the bumps grow in size. In on-

trast with results in double gyre experiments

(Sott and Straub, 1998) where P tends to

derease with inreasing R

e

, the single gyre

irulations tend to have diÆulties in mini-

mizing P . This stems for the single-gyre ir-

ulation being to stable. Under the double-

gyre wind foring, the reirulation is usually

highly unstable and ounter-gyres develop

above a ertain R

e

(the four gyres struture

observed by Greatbath and Nadiga, 2000;

also visible in Sott and Straub, 1998).
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Figure 5.7: Power input by the wind using

the mean �elds with respet to the boundary

Reynolds number.

5.3.2 Role of the Transients for Ge-

ometry V at High Reynolds

Number

We now fous on the results of the high

Reynolds number, R

e

= 3:5, and Geometry

V. In partiular, we are interested in the role

of the transients in ahieving a steady state.

One way to investigate the role of the tran-

sients is to plot maps of the standard devia-

tion for the elevation. Figure 5.8 reveals that

a belt of strong anomalies exist south of the

reirulation. This belt extends northward

to Bump 16 and 15, and westward lose to

Bump 5 where it reahes a maximum. The

western part of the reirulation is also a lo-

al maximum of the deviation. It is along

this belt that we observe strong eddies going

around the reirulation and moving west-

ward. We an further re�ne this kind of anal-

ysis by generating the same kind of maps but

for seleted frequenies.

Figure 5.9 reveals the ativity of the ed-

dies of period over 200 days. This �gure is

very similar to Figure 5.8. It reveals that the

main ontribution to the standard deviation

omes from the slow modes. The maximum

is loated in the eddy-belt as previously in-

trodued, south-east of the reirulation with

another but slightly weaker maximum lose

to the western boundaries. That the eddies

tends to intensify in proximity of the reir-

ulation and not at the boundary probably

means that they strongly interat with the

reirulation.

Figure 5.10 shows standard deviations for

periods between 17 days and 200 days. By

isolating these periods, we hope to emphasize

the inuene of small eddies. A strong sig-

nal is visible south-west of the reirulation

near Bump 5. It may be due to larger eddies

and Rossby waves interating with the west-

ern boundary and bouning bak at shorter

wavelengths. The other notieable point is

that the western part of the reirulation

is mainly ative in this band of frequenies.

Consistent with these �ndings, we noted that

weak eddies of sale above the radius of de-

formation are produed on the southern ank

of eastern bumps. The trajetory of these

eddies instead of being simply westward is

atually more to the south-west in the ab-

sene of strong urrents. The eddies seem to

originate from large shift of the elevation in

interation with the bumps. The strongest

eddies originate from this mehanism but at

higher latitudes. There, they interat with

the reirulation and intensify.

Finally, Figure 5.11 shows the standard de-

viation for periods between 0.6 and 17 days.

This �gure mainly shows the inertial grav-

ity and Kelvin waves. The maximum stan-

dard deviation for this �gure is ten times

smaller than the mean standard deviation

of Fig. 5.8. Of interest is to note the spa-

tial patterns of the Kelvin waves along the

boundaries. The aross-stream length sale

tends to derease near the bump tips, and
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Figure 5.8: Mean standard deviation of the

elevation.
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Figure 5.9: Mean standard deviation of the

elevation for frequenies with period above

200 days.
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elevation for frequenies with period between

17 and 200 days.
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.6 and 17 days.
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derease between bumps. This is evidene

that the Kelvin waves are distorted by the

presene of the bumps. The \paking" it-

self varies along the boundaries of the basin.

The paking is loose in the eastern part of

the basin and very severe in the western part,

espeially at Bump 1 and 2. The paking is

then less and less severe as the Kelvin waves

move anti-lokwise away from the reirula-

tion. These variations in the paking of the

Kelvin waves is related to the strength of the

boundary urrents. These urrents are very

strong near the reirulation, weaker away

and absent in the eastern part of the basin.

Figure 5.11 shows also two other interesting

regions. One is the edge of the reirulation

in the interior of the basin, where the iner-

tial urrents separate from the boundaries.

There, the standard deviation peaks lose to

Bump 1 and sheds a tail along the edge of the

reirulation. Presumably, beause of the

strong inertial urrents, the Rossby number

is large in this region and the inertial ur-

rents are slightly geostrophially unbalaned

and produe inertial-gravity waves. A seond

region of interest is between Bump 1 and 2.

There, the pattern due to the Kelvin waves is

distorted beause of the separation from the

west ank of Bump 1. A reasonable explana-

tion is that the Kelvin waves are disrupted

by the enounter with the strong inertial ur-

rents of the reirulation and generate other

gravity waves at Bump 1.

Transients may be essential in assuring

lower energy levels by transferring the energy

down-sale. This down-sale transfer an

happen in two ways: either the eddies trans-

fer the energy to inertial-gravity waves by in-

terations along the western walls, or in the

reirulation zone through geostrophi im-

balanes. These small-sale inertial-gravity

waves then dissipate the energy if their sale

is lose to the dissipative range. The reir-

ulation loation appears to be the most im-

portant from a plot of the divergene �eld

(not shown). An intense dipole is present

right at Bump 2, in front of the reirulation

zone. The divergene may be related to a

strong foring of the Kelvin waves observed

in Figure 5.11. The Kelvin waves are har-

aterized by a mode two wave (two rests,

two troughs around the basin) with period

8.3 days (Fig 5.12). The fat that these

Kelvin waves orrespond to a free mode of os-

illation and are very regular both spatially

and temporally suggests a resonant intera-

tion

2

. Some irregularities are visible, though.

These arise from interations with the tip of

the bumps along the western boundary. In

order to emphasize the nonlinear energeti

transfer to the Kelvin waves and possible vis-

ous dissipative e�ets, we analyze the am-

plitude of the Kelvin waves as they propagate

along the boundaries.

Sine the amplitude of the Kelvin waves is

dependent on the Coriolis parameter, f , we

need to �rst separate the Coriolis e�et from

prodution or dissipative e�ets in order to

make a lear diagnosti on these waves. To

this aim, we an use the following rule (see

also Gill, 1982, p. 379-380): For a Kelvin

wave propagating along a southern bound-

ary, we have

8

>

<

>

:

� = h

0

e

�y=L

Ro

F (x� t)

u =

gh

0



e

�y=L

Ro

F (x� t)

v = 0 ,

(5.11)

where the southern boundary is loated at

y = 0 km,  =

p

gh and L

Ro

is the radius

of deformation given by L

Ro

= =f . The

linearized total energy of this Kelvin wave

is, after simpli�ation:

te(x; y; t) = gh

2

=2 +Hu

2

=2 =

gh

2

0

F

2

(x� t)e

�2y=L

Ro

(5.12)

After integration over spae, the energy be-

omes

TE =

Z Z

te(x; y; t) dxdy =

gh

2

0

L

Ro

2

Z

F

2

(x� t)dx

(5.13)

Now, we assume that the same Kelvin wave

moves along a meridional wall onserving

TE, with no hange in struture (

R

F

2

dx is

now a onstant independent of the orienta-

tion of the wall) but a hange in amplitude

and in the radius of deformation, L

Ro

. As

2

The regular temporal and spatial struture of the

Kelvin waves still eludes us. It is possible that non-

linear interations our in a band of frequenies that

overs the frequeny of these free-mode Kelvin waves.

At this frequeny, the waves may be so resonant that

they an pik up a very faint signal.
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L

Ro

hanges with latitude, h

0

hanges in-

versely as the square root of L

Ro

for the to-

tal energy to be onserved. And as L

Ro

is

inversely proportional to f , h

0

is therefore

proportional to the square root of f . Thus,

we an orret the amplitude of the Kelvin

waves for the beta e�et by using the rela-

tion:

h

0

0

=

h

0

p

f

0

+ �y

. (5.14)

The elevations along the boundaries were

�rst orreted with respet to hange in the

envelope (passage of an eddy or global shift

of the irulation strength) using a 17 day

smoother. From this time series, h

0

was om-

puted using the di�erene of maximum and

the minimum elevation observed at one loa-

tion during a 17 day time window.

Figure 5.13 shows both h

0

and h

0

0

along

the boundaries as the averaged value over the

last 6 years of simulation. Along the western

boundary, as the Kelvin waves pass the tip

of the bumps, they enounter ounter ur-

rents. The strength of these urrents is not

strong enough to stop the Kelvin waves, but

does slow them and indues the peaks of Fig-

ure 5.13 and the paking in Figure 5.11. It

is also apparent that there is a ontinuous

deline in the amplitude of the Kelvin waves

as they leave the western region of produ-

tion and move anti-lokwise. This deline

is probably due to visous e�ets whih are

large for the sale of the width of the Kelvin

wave. There is apparent but weak modi�a-

tion of the waves as they passed the tip of the

eastern bumps where we measured radius of

urvature of 18 km whih are onsistent with

Figure 5.11. Therefore, the Kelvin waves

tend to follow the oastline even when the

radius of urvature is below the radius of de-

formation. The Kelvin waves annot reet

on the eastern wall as Rossby waves beause

their frequeny is too high for Rossby waves

to exist. There is, however, the possibility

that Kelvin waves generate inertial-gravity

waves along the eastern boundary, as they go

around the bumps and di�rat some energy.

For the eddy visosity used and taking a ve-

loity of 3 m/s along the eastern boundaries,

features below 3 km lie in the dissipative

range. Therefore, these Kelvin waves must

be largely dissipative themselves, diretly or

by further asade to inertial gravity waves.

Thus, the Kelvin waves provide one meha-

nism for the dissipation of the energy at this

partiular Reynolds number (not neessarily

true at higher R

e

).

Of interest is to note that the amplitude of

the Kelvin waves is not onstant during the

simulation (Fig. 5.14). In fat, we note that

the amplitude is anti-orrelated to the total

energy (Fig. 5.15), the amplitude being high-

est when the total energy is the lowest. One

explanation may be that, as the amplitude

of the Kelvin modes grows, more energy an

be dissipated via these waves. If the ampli-

tude of the Kelvin waves grows, the reason

lies in stronger interations with the reiru-

lation. These interations may be related to

the strong instabilities of the reirulation.

It is diÆult to explain why there should

be a 180

o

phase lag between the energy in

the Kelvin waves and the total energy, whih

represents mostly the geostrophi modes. A

180

o

phase lag would appear if all the en-

ergy lost in the geostrophi modes went into

the Kelvin waves with very weak dissipation.

However, Figure 5.13 implies nearly a 70%

drop in amplitude for a Kelvin wave going

along the perimeter of the basin (in 20 days).

This suggests a very strong dissipation, in-

onsistent with the long period variations of

Figures 5.14 and 5.15 (about 500 to 1000

days).

The maps of the standard deviation of the

elevation �eld reveals that the reirulation

zone is very ative. Transient geostrophi ed-

dies tend to amplify in the proximity of the

reirulation. Energy leaks from the reir-

ulation to these eddies and to the Kelvin

waves. In order to emphasize the instabili-

ties in the irulation zone, Figure 5.16 shows

a sequene of snapshots taken of the relative

vortiity every 20 days between day 5705 and

day 5985. This partiular sequene was ho-

sen beause it shows rapid hange of the re-

irulation zone itself. For instane, on days

5705, 5785 and 5885, the reirulation mini-

mum has shifted to the west and is weaker,

whereas the reirulation is the strongest for

days 5745, 5825 and 5925 after the mini-

mum has shifted bak to the east, lose to

the position of the edge of strong positive

vortiity. Consistent with the eastward shift

and the intensi�ation of the reirulation,

a tail of positive vortiity is shed along its

edge. Rapid hanges in the reirulation pat-

terns mean that partiles are not trapped in-

de�nitely inside but esape regularly. This

mehanism may prevent the formation of a
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Figure 5.16: Instantaneous vortiity �eld in the viinity of the reirulation. We fous of the

period between 5705 and and 5925 days in a region limited in the south by y = �250 km,

in the west by x = �200 km and in the east by x = 200 km. Bumps 1 and 16 are visible

along the northern boundary.
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Figure 5.12: Hovm�oller diagram of the �l-

tered elevation with respet to time and lo-

ation along the boundary. The elevation is

given in meters. Note the strong regularity

of the Kelvin waves. They are haraterized

by a mode 2 wave with period 8.3 days.

Fofono� gyre.

From a vortiity balane point of view, the

transients transport the exess of vortiity

produed in the interior to the walls. How-

ever, to be e�etive, suh a transport needs

to at aross the streamlines. In a steady

state, the vortiity balane aross a stream-

line is

I

�

h

�dl+�

I

��

�n

dl =

I

(�+f)u�ndl+

I

�

0

u

0

�n dl .

(5.15)

The transport of the mean vortiity by the

mean urrents does not ontribute to this

balane(u � n = 0), therefore (5.15) simpli-

�es to

I

�

h

� dl+ �

I

��

�n

dl = +

I

�

0

u

0

� n dl ,

(5.16)

where vortiity transport by eddies and vis-

ous ux balane the wind input.

In order to illustrate the eddy transport,

Figure 5.17 shows three sub-�gures. The

Figure 5.13: Amplitude of the Kelvin wave

in meters along the boundary averaged over

6 years. The solid line represents the original

amplitude, h

0

, and the dashed line represents

the orreted amplitude, h

0

0

, with respet to

the Coriolis parameter.
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Figure 5.14: Time series of the amplitude

of the osillations at (x=500 km, y=0 km).

The time series is for instane plotted in Fig-

ure 5.12 all along the boundary. From this

series at the spei�ed loation, the maximum

and minimum were taken in a 52-point run-

ning window (approximated 17 days). The

di�erene of these two quantities divided by

two yields the amplitude at a partiular time.
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Figure 5.15: Total energy for the last 6 years

of simulation. Note that the amplitude of

the Kelvin wave of Figure 5.14 tend to be

anti-orrelated with the total energy.

�rst is the url of the wind input over the

domain (k � r �

�

h

), the seond is the di-

vergene of the eddy transport of vortiity

(r ��

0

u

0

) and the third is a vetor-plot of the

eddy transport normal to the mean stream-

lines as to emphasize the aross-streamline

omponent. The �rst two �gures emphasize

the loal soures and sinks to the vortiity

budget. The darker regions in the �rst sub-

�gure are stronger sinks of vortiity and the

dark (light) regions in the seond sub-�gures

are soures (sinks) of vortiity. In the �rst

sub-�gure, it is apparent that most of the

domain is a sink of vortiity, onsistent with

the idea of a single-gyre foring. However,

due to the strong gradient present in the el-

evation �eld, the southern part of the reir-

ulation is a very weak soure of vortiity

whereas the northern part and more spei�-

ally the regions surrounding Bump 1 and 2

are strong sinks of vortiity. The divergene

of the eddy transport of vortiity (the seond

sub-�gure) shows muh �ner sales and more

noise. The basi features of this sub-�gure

are the presene of two ars along the east-

ern and southern edges of the reirulations

of opposite signs. The interior ar is a region

of onvergene of the eddy transport (soure

of vortiity) whereas the exterior ar is a re-

gion of divergene (sink). Regions lose to

Bump 3, 4 and 5 are mostly soures of vorti-

ity whereas the regions between bumps tend

to be weak sinks.

The maximum magnitude of the eddy

transport is omparable to the value of the

wind input. Three ative regions are evident

on the third sub-�gure. The �rst is the re-

irulation zone, the seond is diretly south-

west of this and the last region is southeast of

the reirulation. The transport in the reir-

ulation zone is outward-oriented along the

western edge and inward along the southern

and parts of the eastern edges. On this sub-

�gure, the two ars of onvergene (soure of

vortiity) and divergene (sink) are reogniz-

able. The net foring over the reirulation

region appears to be weakly positive. This

strong ativity along the edge of the reiru-

lation is another evidene that the transients

are important in preventing the reirulation

from growing and �lling the entire domain,

as it does when the solution jumps to the

high energeti branh.

Southwest of the reirulation (the seond

region), the transport is mainly westward

and southward oriented. Southeast of the

reirulation (the third region), it is mainly

eastward and southward oriented with an ad-

ditional northward omponent loser to the

eastern wall. The two other regions empha-

size the eddy ativity in the eddy belt, as de-

�ned above. Sine westward propagating ed-

dies with negative (positive) relative vorti-

ity tend to migrate north (south), it follows

that the eddy vortiity transport should be

southward. This is onsistent with the sub-

�gure whih shows a main southward orien-

tation. As the belt tends to surround the re-

irulation, the eddies propagate �rst to the

southwest and then to the west. The eddy

vortiity transport seems to adjust to this

and tend to be oriented �rst to the south-

east and then to the south, following a main

leftward orientation with respet to the ed-

dies.

From this analysis, it appears that the role

of the mean vortiity transport (not shown)

is not to be underestimated sine the eddy

transport seems to mainly remove the exess

of vortiity from inner streamlines to outer

streamlines. Close to the western boundary,

the eddy transport shows no partiular east-

ward orientation (whih would be the signa-

ture of transport into the interior of positive

vortiity produed at the wall). The mean

vortiity transport is therefore still nees-

sary to bring the exess of vortiity to the

walls. This is done through several stream-



CHAPTER 5. SINGLE GYRE CIRCULATION IN IRREGULAR DOMAINS 81

lines lying in the visous sublayer, in parti-

ular around Bump-2, where the relative vor-

tiity is at its maximum.

5.4 Sale Analysis and Dis-

ussion

In order to interpret the large sale and

steady harateristis of the Munk irula-

tion of the previous setions, we propose to

develop some saling arguments and ompare

these with the numerial results. One ap-

proah is to derive a riterion based on vor-

tiity budgets (following Pedlosky) under the

free-slip boundary ondition for steady so-

lutions whih allows for urved boundaries.

For straight walls, the relative vortiity is

zero along the boundary. For a strong in-

ertial layer in whih we neglet visous ef-

fets, we know that the absolute vortiity is

onserved along a parel trajetory (see Fig-

ure 5.18). Let us onsider the onservation

of absolute vortiity for simpliity. This one

is �+f = f

0

��L

y

=2 in the southern part of

the domain (upstream of the inertial layer)

where the relative vortiity is zero. Sine

absolute vortiity is onserved in the iner-

tial layer, it is reasonable to imagine that

the minimum absolute vortiity is suh that

� + f

0

+ �L

y

=2 = f

0

� �L

y

=2 in the north-

ern part of the domain (downstream of the

inertial layer). Therefore, the minimum rel-

ative vortiity is � = ��L

y

. Hene, in order

to have an idea of the magnitude of the vis-

ous ux of vortiity out of the domain, we

only need to estimate the width of the vis-

ous sublayer in the presene of the reirula-

tion. One limitation, though, of this approx-

imation is that the reirulation is formed

of losed ontours of both potential vortiity

and the streamfuntion. Hene, to the extent

that partiles remain trapped in the reiru-

lation for long periods, wind foring an lead

to even lower values of � here. However, from

experiene, the minimum in the reirulation

zone is usually superior to (less negative) or

about the number we gave (��L

y

), as long

as the reirulation zone is on�ned to the

northwestern part of the gyre. As soon as

this zone reahes the eastern walls (i.e., with

inreased R

e

), it forms a Fofono�-type gyre

that �lls the whole basin, and for whih the

vortiity is muh lower. Using the vortiity

-1e-12 0

1/s2

(a)

-5e-12 0 5e-12

1/s2

(b)

Figure 5.17: (a) Loal wind input to the vor-

tiity in Geometry V. (b) Loal divergene

of the eddy transport of vortiity in Geom-

etry V omputed using the last 6 years of

simulation. () Vetor plot of the eddy trans-

port of vortiity normal to the streamlines in

Geometry V omputed using the last 6 years

of simulation. The elevation �eld is plotted

as an analog of the streamlines on eah sub-

�gures.
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()

Figure 5.17 ontinued

Figure 5.18: The region in grey represents

where the absolute vortiity is approximately

onserved. It enloses the inertial layer along

the western boundary and the reirulation

in the north-western orner.

budget given in (5.1) and the visous sub-

layer thikness, LÆ

0

M

, as the sale at whih

the vortiity varies in the boundary layer, we

derive the simple riterion for a irulation in

straight walls in the presene of a strong re-

irulation (R

e

� 1):

l

e

�

�L

LÆ

0

M

+

I

�

h

� dl � 0 (5.17)

where l

e

is the length of the reirulation.

The seond term, the wind input, in the vor-

tiity balane is easy to determine. It varies

with h; however, from experiene, we an

onsider h � H. A �rst saling for l

e

an be

obtained from (5.17) after substituting (5.2-

5.5):

l

e

�

p

R

e

L . (5.18)

For R

e

= 0:5, we obtain l

e

= 710 km, whih

is reasonably lose to what is observed in Fig-

ure 5.5.

This saling an be ompared to Ped-

losky's (1996, pages 85-86). Pedlosky eval-

uates the reirulation length sale using

three equalities. The �rst one omes from

the equality in the momentum equations be-

tween the advetion terms and the di�usion

terms in the visous sublayer in the presene

of the reirulation:

l

�

=

r

�

 

e

l

e

(5.19)

where l

�

is the thikness of the sublayer and

 

e

is the transport in the reirulation. The

seond equality omes from the transport

in the sublayer being equal to the Sverdrup

transport and from the veloity in the sub-

layer being equivalent to the veloity at the

edge of the reirulation:

V

Sv

L

l

�

=

 

e

l

e

. (5.20)

The third equality omes from the vortiity

input by the wind in the interior of the oean

being equal to the visous ux of vortiity

aross the reirulation edge

� 

e

l

2

�

l

2

e

= �V

Sv

L

2

. (5.21)

These three ombined equations allow one to

derive one equation for l

e

:

l

2

e

=

V

3

Sv

L

2

�

2

�

2

(5.22)
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whih an be simpli�ed using (5.2-5.5) to

l

e

=

Æ

3

I

Æ

3

M

L = R

e

L . (5.23)

Pedlosky's saling of l

e

however implies an

inonsistent de�nition of the visous bound-

ary layer thikness along the reirulation.

The thikness for the visous sublayer an

be obtained from (5.19-5.23):

Æ

0

M

L = l

�

=

�l

e

V

Sv

L

= R

e

L

�

V

Sv

L

(5.24)

Using again (5.2-5.5), this equation beomes

Æ

0

M

= R

e

Æ

3

M

Æ

2

I

= Æ

I

. (5.25)

Hene, the visous sublayer thikness is no

longer dependent on �. This seems ounter-

intuitive: for highR

e

, one expets Æ

0

M

<< Æ

I

.

Therefore, we will ontinue to use our own

estimate of Æ

0

M

as given in (5.5) and we will

give the equivalent result using Æ

0

M

in the

presene of a reirulation as given by Ped-

losky. The true saling might be in between

these two values. Nonetheless, in both ases,

the behavior of l

e

with inreasing Reynolds

number is roughly the same. The reirula-

tion length quikly inreases with inreasing

Reynolds number and the Sverdrup interior

an no longer be sustained for R

e

> 1.

Now, in the presene of a urved oastline,

(5.17) is modi�ed to aount for the posi-

tive vortiity produed at the wall. Sine the

reirulation has losed ontours of stream-

lines, all the Sverdrup transport goes be-

tween the reirulation and the wall. We as-

sume this region to be the visous sublayer.

Therefore, the volume transport through the

sublayer is:

LÆ

0

M

v

�

� LV

Sv

(5.26)

where v

�

is the veloity in the visous sub-

layer (this is atually idential to Eq. 5.20)).

This yields

v

�

� Æ

I

p

R

e

�L

2

(5.27)

for the saling of v

�

. Using (5.26), we esti-

mated v

�

to be of the order of 0.84 m/s for

R

e

= 3:5. We now need to estimate the vor-

tiity produed at the wall. This is of the

order of v

�

=R

s

as given by (5.7). Let us as-

sume that the prodution of positive vorti-

ity is valid within half a wavelength of the

urvy oastline and that no vortiity is pro-

dued in the other half. The seond term in

(5.1) beomes

I

��

�n

dl �

l

e

2

�L

LÆ

0

M

+

l

e

2

v

�

=R

s

+ �L

LÆ

0

M

�

l

e

Æ

0

M

�

� +

1

2

v

�

LR

s

�

.

(5.28)

Therefore, in the presene of urved oast-

lines, the relation (5.17) beomes:

l

e

�

�V

Sv

L

2

�

Æ

0

M

�

� +

1

2

v

�

LR

s

�

(5.29)

Using the same values as above, Æ

0

M

= 0:040

at R

e

= 0:5 and R

s

= 10 km, this relation

yields a length of l

e

= 340 km.

There are two regimes, depending on the

magnitude of R

s

, the radius of urvature of

the oastline; one at low urvature orre-

sponding to (5.18) and the seond at high

urvature that we want to investigate. Let us

onsider now the ondition under whih the

reirulation is ontrolled by the urvature of

the oastline. This ondition orresponds to

the seond term being larger than the �rst

term in the denominator of (5.29):

R

s

L <

1

2

v

�

�

(5.30)

and after substituting (5.5,5.26), we obtain

R

s

L

<

1

2

p

R

e

Æ

I

. (5.31)

Hene, the transition depends on the

Reynolds number. As R

e

inreases, the ra-

dius of urvature an inrease for the seond

regime to persist, implying less urvy oast-

lines. For the seond regime, the length of

the reirulation is governed by the vorti-

ity produed at the wall and, substituting

(5.5,5.26), is saled as

l

e

�

R

s

Æ

I

(5.32)
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Hene, the length of the reirulation in

urved geometries is no longer dependent on

the eddy-visosity, �. In other words, the

Reynolds number dependene in l

e

disap-

pears. This result is valid as long as the ur-

vature satis�es (5.31).

The weakest point in this argument is

probably the estimate of the thikness of the

visous sublayer (Æ

0

M

) and the veloity in the

sublayer (v

�

) in the presene of the reir-

ulation. Using the estimation of Pedlosky,

Æ

0

M

= Æ

I

, we would have found

l

e

�

R

s

Æ

I

p

R

e

. (5.33)

By this estimation, l

e

is still dependent on

the Reynolds number, but the dependene

would be somewhat weaker when ompared

to regular domains (Eq 5.18 or 5.23). More-

over, in the presene of urved oastline, it is

not lear what Æ

0

M

beomes. The visous sub-

layer might be squeezed between the reiru-

lation and the bumps and therefore, the nor-

mal derivative of the vortiity might be in-

reased, whih favors smaller reirulations.

It is also possible that the visous sublayer

is not squeezed but that some streamlines of

the reirulation may lie within it. In suh a

ase, a proper de�nition of the visous sub-

layer beomes diÆult. The seond point

relates to the form that the vortiity takes

around the bumps, whih we assume to be

onstant over a half wavelength of the urvy

oastline. As we noted in the numerial re-

sults, the vortiity atually behaves quite sin-

gularly at the tip of bumps. An additional

problem relates to the length of the perime-

ter whih inreases with inreasing number

of bumps and with inreasing amplitude of

these bumps. This would again favor lower

values for l

e

. Lastly, these saling arguments

were based on the assumption that the ation

of the transient eddies are negligible, whih

may not be the ase for suÆiently high R

e

.

We now ompare the preditions from

our saling argument about the reirulation

length sale to Figure 5.5. We note that, at

R

e

= 0:5, the reirulation hanges in har-

ater between Geometry II and III. Between

these two geometries, the strength of the re-

irulation weakens and its length dereases.

Moreover, for Geometry V, the length of the

reirulation does not inrease signi�antly

with inreasing R

e

(300 km to 350 km). The

latter observation is onsistent with (5.32).

Therefore, the irulation seems to be on-

trolled by the urvature of the geometry be-

tween Geometry II and III. At R

e

= 0:5, the

inequality (5.31) is however only satis�ed for

Geometry V. Moreover, for a �xed radius of

urvature, (5.31) should be satis�ed at a spe-

i� R

e

and the irulation in that partiular

geometry should be ontrolled by the radius

of urvature beyond that spei� R

e

. How-

ever, we observe the opposite. For example,

as R

e

inreases, the length of the reirula-

tions for Geometry IV inreases slowly but

then jumps to the energetially high branh.

The riterion (5.31) may not be very repre-

sentative when the solution tends to jump to

the energetially high branh with inreasing

R

e

. Nonetheless, the formula derived for l

e

seems to yield a relatively good predition

when the urvature is large enough (Geome-

try V).
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Figure 5.19: Maximum of the mean elevation

for the three geometries. The maximum ele-

vation is a good proxy for the strength of the

reirulation.

Now fousing on results from Geometries I,

IV and V, we derive a preditive law for the

strength of the reirulation based on pre-

vious salings. The Geometries IV and V

are hosen beause they show the most ro-

bust sign that their irulation is ontrolled

by the urvature. The strength of the gyre is

given by the maximum transport through the

basin (dominated by the reirulation). Let

us de�ne the strength of the reirulation as

the volume transport through it. The trans-

port is de�ned as the mean veloity in the

reirulation multiplied by its ross-setion
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length. Let us assume that the magnitudes

of v

�

and l

e

are suÆient to haraterize this

transport. From (5.18) and (5.27), the maxi-

mum transport in regular basins is then given

by

 

max

� Hv

�

l

e

� R

e

Æ

I

�L

3

H (5.34)

and in irregular basins by, substituting (5.27)

and (5.32)

 

max

�

p

R

e

�L

2

HR . (5.35)

Therefore the strength should be sensitive to

the presene of the bumps. A good proxy

for the strength of the gyre is the maximum

elevation observed in the basin (beause of

the geostrophi approximation prevailing in

most of the domain). Figure 5.19 shows the

maximum elevation with respet to R

e

. It

appears that the strength of the gyre is de-

pendent on the form of the geometry. There

is a lear shift in the strength of the gyre

between Geometries I and IV. Moreover, the

slope (the power relation between h

m

and R

e

or the slope oeÆient in a log-log plot) is

lose to unity for the regular geometry (1.06),

whereas it is about 0.5 for Geometry IV. At

R

e

= 0:5, the strength is idential for Ge-

ometry IV and V, but the slope is somewhat

less for Geometry V. These results seem to

follow (5.34) and (5.35), and the saling for

the sublayer thikness in the presene of the

reirulation seems therefore to be loser to

(5.5) than to that of Pedlosky.

Another important quantity related to the

strength of the gyre is the kineti energy

(KE). We plot KE with respet to R

e

.

Sine the strength of the reirulation is de-

pendent on the Reynolds number via v

�

, the

kineti energy must depend on the Reynolds

number despite the presene of the indenta-

tions, but at muh lower rate ompared to

the kineti energy in regular geometries. By

assuming that, at �rst order, KE is governed

by the energy in the reirulation, we esti-

mate that in the regular geometry the energy

grows with both the length and the strength

of the reirulation by using (5.18) and (5.27)

KE � Hv

�

2

l

e

2

� R

2

e

Æ

2

I

�

2

L

6

H (5.36)

whereas it grows only with the strength of

the reirulation in the presene of indenta-

tions, substituting (5.27) and (5.32)

KE � Hv

�

2

l

e

2

� R

e

�

2

L

4

HR

2

. (5.37)
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Figure 5.20: Kineti energy of the mean

�elds with respet to the boundary Reynolds

number. One point has been plotted on

the high energy branh for the �rst geom-

etry. This one was evaluated using a FD-QG

model in a retangular domain and is plotted

only for giving the order of the jump.

Figure 5.20 shows the inrease in the energy

of the mean �elds for Geometries I, IV and

V. The presene of a wavy perturbation of

the irular geometry retards the jump of

the solution to the high energy branh and

the inrease with the Reynolds number is

muh slower in the presene of indentations

along the oastline. Before the solution in

the intermediate geometry jumps to the high

branh, it is noteworthy that the slope for

logKE with respet to logR

e

, for the two

irregular geometries, is rather similar. The

slope is 1.7 for Geometry I, and 0.85 for Ge-

ometry IV and 1.0 for V. All atual values for

the slopes are rather lose to their expeted

values, even though this might be oiniden-

tal.

5.5 Adaptivity

We use the adaptive re�nement in order to

hek the levels of errors in our previous sim-

ulations. The fat is that large disontinu-

ities develop in the vortiity �eld between el-

ements lose to Bump 1 and 2. These dis-

ontinuities are loated lose to the tip of

the bumps and at the edge of the reiru-
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lation. We also noted that some disontinu-

ities are assoiated with the pieewise bound-

ary parabolas near inetion points along

the oastline where third degree polynomi-

als would be more adequate. We therefore

redesign a mesh with more points along the

western bumps and slightly more in the inte-

rior. On the new mesh, the vortiity �eld

is indeed improved but further re�nement

would be needed to obtain a reasonable vor-

tiity �eld, espeially in proximity of Bump

2 where a strong veloity shear exists. More-

over, strong negative vortiity seems to orig-

inate from Bump 3 and is shed in front of

Bump 2 with dramati onsequenes to the

resolution of the vortiity �eld. This is pos-

sibly onneted to two antiyloni eddies

trapped between Bump 3-4 and 2-3. Starting

from this mesh, we use the adaptive strategy

developed in Setion 2.4.3. We have a er-

tain level of liberty in the hoie of the �elds

and the parameters ontrolling the seletion

of the elements to be re�ned. In Setion 3.4,

we used the primitive variables for ontrol-

ling the level errors. From a geophysial uid

perspetive, it would be interesting to on-

trol the errors using the vortiity, whih is

a one order higher �eld relative to the ve-

loity. If the latter is orretly resolved, it

should follow that the other �elds are also

well resolved. We found that this approah

was reliable by testing the adaptive strategy

in a simpler experiment. From this experi-

ment, we noted that the veloity, elevation

and vortiity �elds are indeed well resolved,

and that, for the same parameters �

i

, the

vortiity ontrolling adaptivity indues one

additional level of re�nement. Unfortunately

for Geometry V, we ould not a�ord in terms

of omputational ost more than one adap-

tive yle. Therefore any laim of onver-

gene has to be disarded. After one yle

(Fig. 5.21), the re�ned elements are onen-

trated along the tip of Bump 2 and less near

Bump 1. Of ourse, the re�nement has a

ost. The simulation on the re�ned mesh is

about four times more expensive than that

on the original mesh, due to time-step limi-

tations.

We now ompare the two experiments for

the Geometry V and � = 100 m

2

/s. Fig-

ure 5.22 shows the total (kineti + poten-

tial) energy for the two experiments. The

re�ned and original results are rather simi-

lar for the �rst year, but they depart after-

wards. However, we see the same approxi-

Figure 5.21: Mesh for the original and the

re�ned runs.
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mate low frequeny (about 1000 day period)

behavior, whih is the signature of a Rossby

basin mode. The higher frequenies (small

eddies) may be responsible for the most of

the disrepany. What is more intriguing is

that the Kelvin wave ativity inreases sig-

ni�antly for the re�ned experiment. Be-

tween day 4400 and 4800, the amplitude of

the Kelvin wave on both meshes at the same

loation is rather similar, with the amplitude

on the re�ned mesh being slightly larger.

Then, after day 5000, the amplitude on the

re�ned mesh quikly doubles relative to the

amplitude on the original mesh and this fa-

tor then remains more or less onstant. Pre-

sumably, the prodution of Kelvin waves is

enhaned by the inreased resolution in the

region of Bump 2 where Kelvin waves are

generated. As with the original mesh, the

amplitude of the Kelvin waves on the re�ned

mesh are anti-orrelated with the total en-

ergy. However, the inreased amplitude of

Kelvin waves on the re�ned mesh did not

lead to a derease of the total energy between

the original and re�ned meshes. This raises

two possibilities. Either the Kelvin waves are

only marginal in the dissipation of the energy

or, more probably, this ould be an artifat

of the resolution. On the original mesh, it is

possible that proesses loated near Bump 2

were too dissipative beause of the too oarse

resolution.

The overall struture of the mean eleva-

tion �eld is rather similar for the original

and re�ned meshes (Fig. 5.24). Although

not notieable in Fig. 5.24, an important im-

provement lies in the struture of the eleva-

tion �eld lose to the tip of Bump 1, 2 and

3, where the elevation shows a rather singu-

lar behavior on the original mesh. By on-

trast, the elevation �eld at the same loations

is muh smoother and the amplitude of the

peaks in elevation muh less on the re�ned

mesh. The mean total energy for the re�ned

mesh tends to be slightly larger than that on

the original mesh, although, due to the rel-

ative short period of observation (6 years),

this may not be signi�ant. Muh improve-

ment an be notied in the mean vortiity

�eld. The strong peak at Bump 2 is bet-

ter resolved (although the amplitude is not

severely modi�ed), as well as the zone of neg-

ative vortiity near the same bump. This un-

dershoot seems to be real and not an artifat

of the lak of resolution on the original mesh.

Some improvement is also notieable in the

interior of the basin, likely due to a slightly

improved resolution on the new mesh in the

interior. The edge of the reirulation would

stand some re�nement. However, sine the

largest disontinuities in the vortiity �eld

are lose to the tip of the bumps, the mesh

is �rst re�ned there. To onlude, we gain,

using the adaptive strategy, improvements

over the omplex proesses happening lose

to the bumps and onsequently some im-

provement of the nonlinear interations and

related energetis (the inreased amplitude

of the Kelvin modes). However, there are no

signi�ant hanges in the overall mean iru-

lation.
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Figure 5.22: Total energy for the last 6 years

of simulation for the original and re�ned

meshes. The two urves are very similar for

the �rst year and then depart slowly from

eah other.

5.6 Conlusions

We show appliations of a disontinuous

spetral element model to the problem of the

inertial runaway under the free-slip ondition

in irregular geometries. We �rst show that

more traditional numerial methods, suh as

the �nite di�erene methods, fail to onverge

in irregular domains for the boundary on-

dition under interest. Seond, the main re-

sults of this appliation of a spetral element

model show that, in the presene of irreg-

ular boundaries, the jump to the high en-

ergeti branh is onsiderably retarded, o-

urring at a higher boundary layer Reynolds
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Figure 5.23: Amplitude of the fast osil-

lations at (x=500 km, y=0 km) along the

boundary for the original and re�ned meshes.
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Figure 5.25: Mean vortiity �elds for the

original mesh and the re�ned mesh.
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number. The presene of smooth bumps

along the oastline introdues a soure of

positive vortiity and thus a soure of pro-

dution of eddies through barotropi insta-

bilities. From the point of view of the vor-

tiity budget, positive vortiities along the

walls ease the proess of balaning the wind

input with stronger visous uxes of vorti-

ity at the walls. Eddies are also important

to the vortiity budget beause they trans-

port the vortiity through the inertial layer

to the visous sublayer where it an be dis-

sipated. However, we noted that the eddies

do not play a large role in the vortiity bud-

get. We also noted the presene of strong

Kelvin waves that may provide a meha-

nism for transferring energy to smaller sales

and dissipate it. Of ourse, as the Reynolds

number is inreased (and � dereased), these

Kelvin waves are no more suÆient to dissi-

pate the energy. Then, other nonlinear pro-

esses must ome into plae, suh as triad

interations developed by Bartello (1995) be-

tween low and fast modes. Of interest is

to note that the main Rossby mode of os-

illation of the basin ontrasts with that in

retangular geometries where it is usually ob-

served that the main mode of osillation is a

basin sale Rossby wave of large amplitude

(observable in both QG and SW models).

The weak presene of suh a mode in our sim-

ulation may mean that this mode is damped

by the omplex geometry of the basin.

The assessment of our saling arguments

brings up some interesting issues. First, our

saling arguments are surprisingly lose to

the numerial results despite obvious theo-

retial weaknesses. Beause those arguments

assumed laminar boundary layers, this im-

plies that prodution of eddies was insuÆ-

ient, not only to invalidate our saling, but

also to prevent inertial runaway. It is worth

ommenting that the double gyre irulation

usually indues many more eddies. In or-

der to get more eddies, the single gyre ir-

ulation would require more urved bound-

aries. For instane, it would be interesting

to investigate what sort of equilibrium an

be reahed in basins were the boundaries are

so irregular that free-slip ows have no hoie

but to separate from the boundaries at eah

bump. In suh a ase, it is however likely

that the assumptions on whih the SW equa-

tions are based would be no longer valid.

For instane, the fat that the region around

Bump 2 requires a resolution below 1 km

implies that the SW assumption is breaking

down. Moreover, the small eddy prodution

points out to lak of physial proesses repre-

sented by the SW models. Barolini insta-

bility, for instane, whih is a main ontrib-

utor to turbulene in both the atmosphere

and the oean seems to be needed in order

to de�nitively lose the inertial runaway is-

sue in single gyre experiment. In suh a

ase, we would need to run expensive three-

dimensional barolini models. Finally we

demonstrate the use of an adaptive strategy

in oean modelling. We note however that

the ost of suh a method is higher than us-

ing �xed meshes in time (see Setion 3.4).

Nonetheless, it provides an automated pro-

edure for resolving and loalizing fronts and

strong nonlinear urrents whih would other-

wise require tedious manual remeshing. For

instane, we noted that the results from the

adapted mesh yield stronger Kelvin waves,

apparently related to the inreased resolu-

tion in the regions of Kelvin wave produ-

tion.



Chapter 6

Conlusions

In this thesis, we were interested in assess-

ing the performane of di�erent numerial

methods for modelling the oean in omplex

geometries. Complex geometries are repre-

sented by step-like walls in the most onven-

tional numerial method used in oeanogra-

phy, namely the �nite di�erent (FD) method.

The presene of these steps may be detrimen-

tal to the representation of urrents loated

along the boundaries, espeially the west-

ern return urrents if we onsider the sim-

ple Munk gyre problem. From this perspe-

tive, �nite element (FE) methods and spe-

tral element (SE) methods with their au-

rate representation of the oastlines may pro-

vide more aurate solutions of the oean ir-

ulation.

In Chapter 3, we ompare these di�er-

ent numerial methods for a few test prob-

lems. In a retangular geometry, the FD

method is always more aurate at a given

ost than FE methods using linear basis

funtions. However, for a simple analyti-

al linear solution in a irular domain, we

showed that onventional FD methods tend

to have trunation orders between unity and

two, instead of two. In that ase FE meth-

ods provide more aurate solutions at the

same ost than do FD methods. For nonlin-

ear solutions and in a retangular domain,

all tested FE models showed a bias whih

tends to be robust with inreasing resolu-

tion. In most �nite element models, the

problem is linked to numerial dissipative ef-

fets that were too small to be deteted in

the linear test-ases but that were large in

the nonlinear test-ase. These dissipative

e�ets are related to the stability proper-

ties of eah of the shemes and how eah of

them �nds its way around the stability on-

dition. Only one tested FE model satis�es to

the so-alled Ladyzhenskaya-Babuska-Brezzi

(LBB) ondition for FE models. This model

showed also some signs of over-dissipation

but in that ase, the problem was more re-

lated to the use of a semi-Lagrangian treat-

ment of the time disretization of the equa-

tions. Unfortunately, we have not made use

of a FE model satisfying to the LBB ondi-

tion with an Eulerian treatment of the equa-

tions. However, we an speulate based on

the results of Chapter 3 that suh a model

would not be as ost-e�etive as the tested

SE model. Nonetheless, the use of a LBB-

omplying FE model may prove to be more

appropriate than FD models when spatially

variable mesh apabilities are required, suh

as for resolving straits and inlets.

The tested element model shows high or-

der trunation errors for linear and nonlin-

ear test-ases in retangular and irular do-

mains. In the latter ase, we reahed a lim-

itation due to our use of pieewise parabo-

las for the desription of urved geometries.

To test ost-e�etiveness, we ompared the

SE and FD models for the nonlinear Munk

problem in a retangular domain. This test

reveals that the auray of the SE method

has to be about 1% of the true solution to be

more e�etive than the seond order C-grid

FD model. However, for nonlinear problems

the SE method presents a deisive advantage

that its auray remains more or less iden-

tial in retangular and generally urved do-

mains whereas that of the �nite di�erene

methods degrades.

Finally, we tested with suess an adaptive

mesh strategy in a time-stepping mode. We

designed an automated proedure that esti-

mates the loal error and re�nes the mesh

aordingly in regions of largest errors as the

simulation runs. This was tested for the

Munk gyre problem. We noted that, when

90
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the required auray was high enough, most

of the re�nement goes into resolving the ini-

tial Kelvin waves whih is exited by the

onset of the wind and propagate along the

boundary. After this initial transient pro-

ess omes to rest, the mesh is automatially

dere�ned along the boundary. In terms of

ost, the adaptive proedure proves to be

slightly less eÆient than to run the model

on a �xed mesh in time. However, this pro-

edure might be useful in ontexts for whih

the solution is not known a priori. In suh

ases, the loation of sharp fronts is not

known and may require a tedious manual

remeshing in order to resolve these features.

Sometimes, this proess has to be done iter-

atively a large number of times and, in suh

a ase, an adaptive strategy will prove far

superior.

In Chapter 4, we foused on the inu-

ene of step-like walls in the �nite di�er-

ene methods, extending the study of Ad-

roft and Marshall. We used vortiity bud-

gets as a diagnosti tool in order to assess

the auray of the numerial solutions. We

showed that the auray of FD methods de-

grades in presene of steps along the bound-

aries and that the trunation order is low-

ered. Depending on the spei� numeris,

we estimated that the trunation error varies

between the zeroth and seond order. In

general, we found that vortiity budgets are

not very aurate due to the presene of ex-

tra terms, suh as the advetion of vorti-

ity, whih do not appear in the analytial

budget. Surprisingly, we noted that a quasi-

geostrophi model does not lead to signi�-

antly more aurate vortiity budgets than

those given by shallow water models, even

though the former type of models expliitly

solves for the vortiity equation. We also

used a vortiity budget analysis on a shallow

water B-grid model with free-slip boundary

onditions whih proved not to onverge to

a steady state with time, whereas the equiv-

alent C-grid model does. In fat, this par-

tiular B-grid implementation proved to be

inadequate.

In Chapter 5, we explored the theoreti-

al possibility that free-slip irulations an

develop their own eddies if the oastline is

urved enough. This hapter an be on-

sidered as an appliation of the spetral ele-

ment method and a ontribution to the un-

derstanding of the oean irulation from a

theoretial point of view. Sine it is not lear

what type of boundary onditions is the most

realisti to use at typial or even high res-

olution in oean modelling, there is no ob-

vious reason to disard the free-slip bound-

ary ondition

1

. So far, time dependent sim-

ulations of the nonlinear Munk problem in

retangular domains under free-slip bound-

ary onditions show that the solution is very

steady one it reahes its equilibrium. That

is, no eddies develop. Moreover, under the

same boundary ondition, the solution be-

omes ompletely unrealisti passed a ertain

Reynolds number and still remains steady.

Hene, the neessary eddies that transport

the exess of vortiity to the walls are absent

in these simulations. Therefore, these simu-

lations in retangular domains make a good

ase against the use of the free-slip bound-

ary ondition. This was ertainly a strong

inentive to use instead the no-slip bound-

ary ondition. However, the real oeans

present irregular oastlines whih may be

the key-fator absent from these earlier ex-

periments. We therefore investigated the

inuene of having urvy oastlines in the

otherwise usual Munk problem for varying

Reynolds number. The only model available

to us that ould perform suh a task with a

high degree of auray was the SE model.

The �nite di�erene models are too sensitive

to the presene of steps along the oastline

and the tested FE models are too dissipative

for the Reynolds numbers we are interested

in.

From saling arguments and assuming a

steady state with no transient eddies, we

were able to derive that the bumps along the

oastline ause the irulation to slow down

ompared to the no-bump ase. This was due

to the prodution of positive relative vorti-

ity at the walls lose to the tip of the bumps

for a mid-latitude gyre in the northern hemi-

sphere

2

. Furthermore, as the Reynolds num-

ber inreases, we predited that the total ki-

neti energy should inrease at muh slower

rate than that of the no-bump ase. If

1

The no-slip and free-slip boundary onditions are

the traditional boundary onditions used in oean

modelling but they are not the only ones possible.

In fat, some other parametrizations have been pro-

posed. See for instane Straub (1999).

2

the sign of the relative vortiity produed at the

wall would be negative in the southern hemipshere

for a yloni gyre but our results would still apply.
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these free-slip irulations were able to pro-

due their own eddies, it would be possible

that even lower total kineti energy values

ould be reahed. Therefore, the presene

of bumps along the oastline might be suÆ-

ient so that the main irulation esapes the

anti-intuitive fate of not onverging to some

statistial steady state as the eddy visosity

is dereased. This fate is known as the iner-

tial runaway and represents our inability to

explain how the nonlinear proesses of sim-

ple ows are suÆient to balane a derease

of poorly known di�usive parameters, suh

as the eddy visosity.

Unfortunately, only the �rst predition

was veri�ed; that the rate of inrease of the

total kineti energy with inreasing Reynolds

number was dereased, but not reversed,

ontrary to our seond hypothesis. We also

noted a dependene on the loal urvature of

the oastline. The higher the urvature, the

lower the total kineti energy. Exept for the

largest urvature, the solutions jump to an

unrealisti state passed a ritial Reynolds

number. For the largest urvature and the

largest Reynolds number, we observe some

eddy ativity but not enough to slow down

the total kineti energy inrease ompared

to our saling arguments. In fat, most of

the vortiity balane seems to be ahieved

by the main irulation. Indeed, the vorti-

ity is large and positive along a signi�ant

portion of the bumps whih leads to a large

ux of vortiity at the walls. Moreover, we

observed that the vortiity tends to follow

a rather singular behavior along the bumps

even though the bumps are smoothly urved.

This was veri�ed by using an adaptive mesh

algorithm whih inreases the resolution of

the model where the errors are the largest.

More eddies ould have been generated by

larger urvature. However, we feared that we

reahed the validity limit, in terms of length

sales of the observed proesses, of the sim-

ple equations we were using, namely the shal-

low water equations. Barolini models may

be required to represent the small sales fea-

tures ourring along the western boundary.

One other important limitation of this

study that we need to mention is related to

the \fratal nature" of the oastline. From

that perspetive, it is quite unreasonable to

de�ne \one" urvature of the oastline, as

this one is modi�ed with inreasing sampling

of the oastline. Rather, we limit ourselves

to the study of the inuene of urved oast-

lines whose radius of urvature falls in the

range of sales of interest (from the radius of

deformation and the boundary layer widths

to the basin sale). A more realisti ap-

proah would be to use a spetrum of wave-

lengths and amplitudes onsistent with real-

isti oastlines. The overall result might not

be very di�erent from those presented in this

thesis, though.

The SE model showed great advantages as

a tool in order to address theoretial issues

suh as the inertial runaway problem. As it

aptures some features of the oastline, suh

as the urvature, we ould address the is-

sue of free-slip ows in presene of urved

oastlines. However, its general variable res-

olution oupled to an adaptive mesh re�ne-

ment enables this model to address the run-

away problem and other theoretial aspets

linked to nonlinear ows in presene of ir-

regular oastlines for any kind of boundary

ondition. Nonetheless, the model still has

to prove its e�etiveness in the more general

barolini framework. The vertial represen-

tation is ertainly a very omplex issue, and

di�erent strategies are possible. Shemati-

ally, the vertial representation an be z- or

�- or isopynal levelled. Of the three, the

� seems to be the most natural to the SE

method beause it allows for a polynomial

desription in the vertial as well. However,

it does not o�er a good ontrol on the par-

tiular depth range to resolve. It therefore

may have diÆulties in resolving sharp tem-

perature or salinity gradients and may lead

to Gibbs osillations. The same problem ex-

ists in low-order numerial methods, suh as

�nite di�erene models. However, it simply

leads to auray problems rather than sta-

bility problems.

This study was obviously biased in fous-

ing on one partiular boundary ondition,

the free-slip boundary ondition. Under this

boundary ondition, it is known that the FD

methods do poorly in presene of steps. It

may therefore seem obvious that SE meth-

ods do better. One may ask about the other

well known boundary ondition, the no-slip

ondition. For the no-slip boundary ondi-

tion, we may assume that the FD methods

in irregular domains do as well as they do for

the nonlinear Munk problem in a retangular

domain (Setion 3.4). In the latter ase, we

showed that the SE model does better only
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for high enough resolutions at whih the er-

ror is below 1%. At this range of resolution,

the error is low enough that FD methods are

still ompetitive. Unless one is interested in

representing aurately the fast transients of

the oean suh as Kelvin waves, for whih the

FD methods do poorly independently of the

boundary ondition, the FD methods have

still a long future in front of them. This last

statement is also biased by the assumption

governing the primitive equations. If, for in-

stane, faster and bigger omputers allow for

very high resolution non-hydrostati simula-

tions (whih require the inversion of a 3D ma-

trix problem), then the FE methods might

be attrative again, sine their main over-

head, onsisting of the inversion of a matrix

problem even when the equations are solved

expliitly in time, is no more.

The last point we would like to men-

tion is related to the e�et of \real" steps

present along the oastline as opposed to

\fake steps" that FD disretization tend to

generate. As they are singular features, no

numerial method is able to model them,

although some analytial approahes were

proposed (Cherniawsky and Leblond, 1986).

Nevertheless, real steps an be approahed as

the limit of inreasing to in�nity the urva-

ture of the bumps. From that point of view,

we an derive some qualitative onlusions

based on the results obtained in Chapter 5

with the SE model. It seems that steps al-

ways have a dissipative e�et and that all

the �elds will be singular lose to the step.

Therefore, the orreted version of Adroft

and Marshall (the B ombination of Chap-

ter 4) is biased beause it under-represents

the e�et of steps by assuming that they are

non-existent to the point that irulations

in rotated basins look similar to irulation

in non-rotated basins. Hene, their method

is very suessful in rotated retangular do-

mains but fails in more generally irregular

domains. The orret solution in presene of

irregular domains depends on the irregular-

ity of the domain. It lies between the or-

reted version of Adroft and Marshall and

the traditional implementation of the C-grid

model whih is more dissipative. Ultimately,

the true solution reets the fratal nature

of the oastline.
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An A-grid Energy Conserving

Formulation
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Table A.1: Notations for the �nite volume

method

It is possible to formulate an energy on-

serving sheme on a A-grid and generalize it

to a �nite volume formulation (i.e., irregular

domains). We will use the notations of the

latter (Table A.1). The time integration has

to be done through an iteration proess sine

the formulation is semi-impliit in time, in-

luding the non-linear terms.
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Let us de�ne K = u

2

and use U = hu, then

A.2 reads
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and let us multiply A.1 by K
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We then sum together A.3 and A.4 in order

to get an equation for the kineti energy
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The equation for the potential energy is given

by multiplying A.1 by g�
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Let us de�ne e

k

= g�

2

+ hK. We then get

the total energy equation by summing A.5

and A.6
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Therefore, the total energy budget is
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Hene, the onservation properties of this

sheme omes from the assumption about
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, the way we interpolate the data onto the

faes of the ells. The usual assumption is
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The right hand side vanishes for open do-

mains. For losed domains, some assump-

tions are required. If we imagine a �titious

ell on the other side of the wall, we must

have
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This an be satis�ed ifB

�

j

= B

�

i

. We are then

left with satisfying F

b

� (U

�

i

+U

�

j

) = 0. This

orresponds to enforing that the veloity is

tangential at the wall. This is a very reason-

able assumption sine it mathes the invisid

boundary ondition. Hene, the energy an

be onserved for an A-grid sheme in absene

of dissipation proesses and foring.

In pratie, this sheme only retards the

upoming of spurious modes. In order to

ontrol the spurious modes, one idea would

be to make the sheme also onserve the en-

strophy. Aording to Abramopoulos (1988),

this is ahievable but a unreasonable prie.



Appendix B

Model Vortiity Budget on a

B-grid

Using Equations 2.21 and 2.22, the model

vortiity equation is obtained at the enter

of the ell (also the � loation):
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(B.1)

Study of this equation shows that all terms

anel out in the interior. However, lose

to orners, they are not neessarily zero.

The pressure term, hereafter I

P

, for instane

gives after summation over the domain and

emphasizing the terms lose to the northeast

orner (assuming �x = �y = �):

I

P

=

X
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X

j
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� �
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+ � � � + other orner terms

(B.2)

where �

�

is the extrapolated value of the ele-

vation along the wall and (i; j) are the indies

taken at the veloity point diretly southwest

of the orner. When using a linear extrap-

olating law, �

�

i+1;j

= 3=2�

ij

� 1=2�

i�1;j

, I

P

beomes

I

P

=

g

4

(�

i;j�1

� �

i�1;j

)

+ � � �+ other orner terms .

(B.3)

Hene, the pressure term in the vortiity

equation does not anel out. However, for

the advetive terms, hereafter I

adv

, we have

I

adv

=

X
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X

j
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x
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(B.4)

whih simpli�es �rst to a irulation integral

of the form

I

adv

=

X

uru ��l . (B.5)

One an prove that this summation anels

out. Hene, I

adv

= 0. The same ours for

the Coriolis terms beause the summation

an be reast as a summation of ux nor-

mal to the wall at veloity points along the

wall, whih are zero due to the impermeabil-

ity ondition. Therefore, the model vortiity

budget redues in the ase of the B-grid to

X

i

X

j

��

�t

�x�y = F

i

+ F

vis

� I

P

. (B.6)

Hene I

P

is present in the model budget

whereas it should ideally be zero. Note that

a zero order extrapolation (�

�

i+1;j

= �

ij

) re-

sults in the anellation of I

P

. However, this

extrapolation leads to ounterurrents along

the boundaries for the Munk problem on a

beta plane, as shown in Setion 4.2.
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