UK TURBULENCE UNIVERSITY OF
CONSORTIUM OXFORD

Spray Drop Generation by Breaking Waves

Kaitao Tang!, Thomas Adcock?, Wouter Mostert?!
BGUM 2025, 9t July

1 Department of Engineering Science,
University of Oxford, Oxford, OX1 3PJ, UK



Introduction: Ocean Sprays
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Major pathways of ocean spray generation [1]
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Spray formation during wave breaking

Sprays enhance air-sea transfer processes
Small drops — cloud nucleation sites
Large drops — tropical cyclone formation

[1] E. Andreas et al., 1995.
[2] F. Veron, 2015.

Generation rate (m? s um1)

Sea-Spray Generation Function (SSGF)
No agreement at large droplet sizes

Poor knowledge of spume and splash drop
generation
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Currently available SSGFs (coloured curves) [2]
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[1] F. Veron, 2015.
[2] E. Andreas et al., 1995.

Experimental Observations P

0O ms

Bag breakup at sea
surface under high
winds [3]

jet

Splashing of a drops

plunging breaker [4]

film
droplets

Fl+: +0.000 ms Hydrodynamics Laboratory - University of Maryland Erinin, Duncan, et al. Major pathways Of ocean Spray generatlon [2]



Modelling Approach

6.8 ms

Droplet bag breakup [1] and sea surface breakup at high winds [2]

Rims impact
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[1] I. Jackiw and N. Ashgriz, 2022.
[2] Y. Troitskaya et al., 2017.

[3] B. Néel et al., 2020.

[4] M. Erinin et al., 2023.

[5] E. Andreas et al., 1995.
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Numerical Setup

* The Basilisk Solver [1]

Two-phase, incompressible Navier-Stokes Equation w.

surface tension
Finite-volume w. adaptive mesh refinement (AMR)
Geometric volume-of-fluid (VOF) method

* Controlling Parameters

Uid
We EM, OhEL,
o VPiodg
pr=Pl_g33 o p=E_ss
Pg Hg

* 3D Simulation Configurations
Film fragment statistics

[1] Available at: http://basilisk.fr/
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3D configurations of droplet aerobreakup.



Physically Realistic Fragment Statistics

* VOF Breakup

Film breaks when its thickness reaches
grid size

Unphysical, numerically uncontrolled
and grid-dependent

e Controlled film rupture with the MD
algorithm [1]

* Convergence of fragment statistics with
d = 8A3 and fixed Lgjg

Agreement with log-normal fit for
experimental results in [1]

* Fragments with d < 8A3 not reaching
grid convergence
Ligament breakup not controlled by MD

[1] L. Chirco et al., 2022.
[2] D. R. Guildenbecher et al., 2017.
[3] Vledouts et al., 2016.
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Bag breakup without
(left) and with (right)
controlled film

rupture.
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Left: experimental photograph showing thin film breakup [3]. Right: fragment size

distributions with controlled film rupture.



Film Breakup Mechanisms

Long ligament breakup

Primary and satellite
fragments

Shape oscillation of
primary drops
(frequency
measurement)

Short ligament breakup

Formation of a single
drop

Large node detachment

Successive breakup of
bordering ligaments

Breakup of a long ligament (upper row), a short ligament and a liquid node (lower row).



Comparison with Experiments

Large node detachment Destabilisation of receding hole
(perturbation by ambient rims (large bag curvature and
airflow?) small thickness?)

(@) (6)

Formation of one or two
large holes (sufficiently
low film perforation rate?)

Side views of bag breakup from Ref. [1]
[1] I. Jackiw, Journal of Fluid Mechanics, 2022.



Problem Configuration

P, Uy, O

Configurations of secondary wave splashing (left) and rim collision (right)

Controlling Parameters

_ pi(2Up)%d, _ pigdyp
e = ,BO = )
(4 (4)
oh=—2_—001, p=P_g33 p=f_ss5

Vp1doo Py Hg

Perturbed rim surfaces with filtered white noise signal
Basilisk, Two-Phase NS Equation w. AMR Scheme



Ligament Merging

Competition of two timescales (quasi-steady):
Ligament merging Atyerge X Nli_gz

Drop shedding Atgpeq /plwfi’g/a
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Ligaments merging on the corrugated rim Fragment size distributions at different We

[1] Y. Wang & L. Bourouiba. 2018.



Influence of Gravity

* Retraction timescale tp
e Other dynamics unaffected
* Size distribution model predicts wave splashing data
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Rim splashing without (top) and with (bottom) gravity Fragment size distributions of secondary wave
splashing [1] and rim splashing
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SSGFs for Wave Splashing

' T
L e Fairall2009
“eee. . mmamam Troitskaya2018
10‘3 | Creenannennn, No bag |
Bag break.

A realistic sea state with wave breaking [2]

* Prerequisites
Distribution of breaking wave crest lengths A(c) [2]
Splash size distribution N (7, tg)
0 ) * Splash drop SSGFs
10} 102 103 Contribution from splashing not negligible [1]
r (pm) Secondary breakup
. . . ) Finite fragment lifetime
SSGFs for wave splashing (grey and black curves), in comparison with . o ]
previous results (dotted curves) [1] * New possibilities and motivating observational

[1] F. Veron, 2015. StUdleS

[2]J. Wu et al., 2023.
[3]Y. Troitskaya et al., 2018.
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Conclusions

Droplet Bag Breakup
* Controlled bag film perforation;
* Physically-based fragment statistics;

* Good agreement with experiments:
Rim collision and destabilization,

Ligament and node breakup.

Rim Collision

Scaling for ligament dynamics;

Predicting fragment size distribution;

Calculating wave splashing SSGFs:
Arresting effects of gravity,

Agreement with breaking wave statistics.
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Fragmentation of colliding liquid rims
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Droplet bag formation in turbulent airflows
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Future Work

O Fully resolved bag perforation at higher resolution
Validation against experiments

0 Bag size distribution at the wind-sheared ocean surface
Development of physically informed SSGFs for spume drops

0 Effects of surfactants, evaporation, etc.

Accounting for spume generation with realistic sea states

Surfactants suppress late-time bag growth [3]

Thanks for your attention!
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Ligament Merging Phenomena
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[1] Y. Wang & L. Bourouiba. Journal of Fluid Mechanics,

2018.

[2] J. M. Gordillo & F. J. Blanco-Rodriguez. Physical Review Fluids, 2023.
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Evolution of averaged fragment size



Modelling Fragment Size Distributions

Right tails evolve over time
Modelled assuming time-dependent ligament width distributions
End-pinching dynamics

Predicting the full size distribution N(7, t) for any We

1072 4A11 1071

Ligaments merging on the corrugated rim Numerical measurements of fragment size distributions

_ _ _ in comparison with theoretical predictions 17
[1] Y. Wang & L. Bourouiba. Journal of Fluid Mechanics, 2018.
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