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Thermal-Convection
Passive fluid: external energy supply

All the spaghetti was eaten

Buoyancy-Driven (T ∝ ρ)
i.e.: Rayleigh-Bénard

downwelling, dense fluid → ”plume”

Boussinesq 1903, Thuval 2020
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Bio-convection
Active fluid: a colony of Chlamydomonas Reinhardtii (CR)

A. Huygues-Despointes, 100x, top view

A. Givaudan, 2x. Window size 400µm

Leptos et al. 2013, real time.
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Bio-convection, triggering mechanisms∗
(*) Present state-of-the-art

1. CR reorients towards gravity (gravitaxis, bottom-heavy)
2. CR swims and accumulates at the air-water surface
3. CR-dense layer is heavier than the fluid → buoyancy driven instability.
4. Plumes impact the bottom, recirculation and rise of convection pattern.

Kessler 1985
Bees & Hill 1997
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Experiments Are plumes really triggered by the dense layer?
Dark spots (cell concentration) first occurring far from the dense layer?

Side view. Height = 1mm, ∆t = 2s, 10fps. Experiment by H. de Maleprade.

Spanwise-averaged intensity. Simultaneous dense layers forming at top and bulk
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Modelling bio-convection: a microswimmer-driven flow

Agent-resolved, Re ≪ 1

▶ Fluid-Solid coupling: ∇ · u = 0, ∇2u = ∇p

+ f + boundary conditions
▶ meshless methods (e.g. Stokesian Dynamics, Ishikawa 2020, ...)
▶ meshed methods (e.g. Fluid Particle, Jibuti Rafai Peyla 2014, ...)

Modelling flagellate microswimmers

(a) Lushi & Peskin 2012, (b) Drescher et al. 2010, (c) Jibuti et al. 2014,
(d) Wan et al. 2019, Friedrich & Julicher 2012. From Ishikawa 2024.

Time-averaged flow field
around a biflagellate.
Drescher et al. 2010.
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Introducing the tHree model

Drescher et al. 2010.

Three point-forces

Drescher et al. 2010.

3 forces + 3 bodies

tHree model of a
biflagellate puller.

Why still another model?

▶ Same physical model, compatible with multiple resolution methods/scales

▶ Access to complex physics (confinement, light, non-linearities...)
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Characterising tHree model. Single, force free swimmer’s velocity U
A. Palotai 2025 internship.

Analytical solution

U =
F

6πµR

(
1− 3R sin2(α)

2d
− 3R cos2(α)

4d

+
R3 sin2(α)

2d3
− R3 cos2(α)

4d3

)
following Kim & Karilla 1991
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U
s
w
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analytic

▶ Numerical validation with Stokesian Dynamics
https://github.com/rajeshrinet/pystokes

▶ Velocity U decreases when d/R → 0

▶ Particle collapsing = 0 thrust = 0 efficiency
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HOW I MADE MY FIRST push
HI STEPHANE,
ROUGH DAY? YEAH, BETTER 

UNLEASH basilisk/src
BEFORE PAPERWORKS 
TURNS ME TO STONE.

Based from real events. March 2025. Inspired by xkcd.com 8 / 25



Microhydrodynamics with Basilisk
A number of validation available on sandbox/fpicella/README/...

#include "grid/quadtree.h"

#include "ghigo/src/myembed.h"

#include "ghigo/src/mycentered.h"

// -> myviscosity-embed.h -> mypoisson.h

#include "fpicella/src/driver-myembed-particles.h"

// adapted from sandbox/Antoonvh/tracer-particles.h

int main () {stokes = true;}

Velocity BC on embed: ghigo/src/mypoisson.h

projection step: from u∗ (∇ · u∗ ̸= 0, no BC on embed...)

∇ · (α∇p) = ∇ · u
∗ + uembed · n

∆t
(1)

u← u∗ −∆tα∇p (2) A sedimenting cylinder.
Validation: Dvinsky Popel 1987.

9 / 25

sandbox/fpicella/README/...
ghigo/src/mypoisson.h


A general-purpose framework for the tHree model

tHree in Basilisk
finite volume, adaptive mesh...

basilisk.fr/sandbox/fpicella

▶ quasi-steady Stokes solver
basilisk.fr/src/navier-stokes/centered.h

▶ Forces: smooth kernel (Cortez 2001)

▶ Body: high-viscosity blobs (Tanaka & Araki 2000)

▶ Multiple-particle tracking
basilisk.fr/sandbox/Antoonvh/tracer-particles.h

tHree swimming velocity.
2D Basilisk vs 3D analytic prediction.

10 / 25
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Simulating bio-convection: tHree model
microswimmer-driven instabilities. Cell height 64 · R, cell width 512 · R, 512 tHree microswimmers.

Spanwise-averaged intensity. Dense layers forming simultaneously at top and bulk. (statistics ok?)
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Local concentration fluctuation triggers plumes (?)

Before the onset of plumes, local high cell concentration:

1. observed far from free-surface (role of microhydrodynamics!)

2. → negative velocity

Kessler 1985

12 / 25



Binary interactions
Loss of hydrodynamic efficiency

▶ ϕ = 0, aligned, variable distance λ.

▶ T = [0, 4, 0], ρ = µ = 1

▶ zero buoyancy B = 0

▶ identical blob sizes
R = 1., d = 1., β = 1.
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▶ below λ/R = 3, contact (unphysical)

▶ Repulsion (ux) @ approach (puller)

▶ Efficiency (uy ) drops @ approach
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Binary interactions + negative buoyancy
Identical to previous slide, but with B < 0

Confinement + added gravity

▶ decrease swimming velocity...

▶ ... up to negative @ approach!

Goldman, Cox & Brenner, 1966

▶ Purely sedimenting particles

▶ a/h = 1
λ/R

▶ As particle approaches (right), increse
in sedimentation speed!
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Plumes without a free-surface
Single Swimmer
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Plumes without free-surfaces.

|B| = |T| · 0.0% (no-buoyancy)

0.0

0.5

〈U
y
〉,
〈U

y
〉

0 2000 4000 6000 8000 10000

Time

1.25

1.50

1.75

〈ρ
〉,
〈ρ
〉

|B| = |T| · 2.5% (negative-buoyancy)

−0.5

0.0

〈U
y
〉,
〈U

y
〉

0 2000 4000 6000 8000 10000

Time

1.5

2.0

〈ρ
〉,
〈ρ
〉

16 / 25



Triggering Bio-convection
take-home messages

1. Hydrodynamic interaction →
concentration fluctuation

2. Concentration increase →
hydro. efficiency decrese

3. → sedimentation kicks-in

Persp. Numerics + Experiments

▶ 2D/3D effects?

sandbox/fpicella/microswimmer_tHree_forces/

plumes_x_periodic.c
17 / 25
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Single y-periodic plume, experimental proof
Kessler 1985

I bet you can not see this with an
’averaged’, buoyancy-only model!
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Triggering plume ̸= sustaining bioconvection

Wager 1911

Long-term bioconvection patterns. Top view.
Kage et al. 2013
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Binary interactions, non aligned
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Binary interactions, full 3D
A. Palotai
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Binary interactions + buoyancy, normalized
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Modelling bio-convection (1): a buoyancy-driven flow (?)

θ

v

L

U,P
c•

Q
,V

c

Harashima et al. 1987

Eulerian, averaged, L≫ θ

DU

Dt
= −Sc∇P + Sc∇2U

− Sc · Ra c ĝ

(3)

∇ ·U = 0

(4)

∂c

∂t
= −∇ · ((U+Vc ⟨Q⟩)c −∇c)

(5)

∂Q

∂t
=

1

2G
(ĝ − (ĝ ·Q))+

Ω×Q

2

(6)

Ra ∝ buoyancy, Sc ∝ diffusion,
G ∝ reorientation towards gravity .
Vc, CR average swimming velocity
Q(x, t), CR average orientation
c(x, t), CR average concentration

Pedley & Kessler 1990
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(3)

∇ ·U = 0

(4)

∂c

∂t
= −∇ · ((U+Vc ⟨Q⟩)c −∇c)

(5)

∂Q

∂t
=

1

2G
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Simulating bio-convection: averaged, buoyancy-driven model
In-house implementation with Spectral Element Method Nek5000

Side view. Ra,Sc,G,Vc from Ghorai & Hill 1999

Spanwise-averaged intensity. First top dense layer thinning, then plumes.
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BASILISK!

fprintf (stderr, 
"HELLO WORLD \n");

darcs, MACROS... and
the BVIEW thing! basilisk.fr/sandbox/

Antoonvh/README

BASILISK
inspired by xkcd.com 25 / 25
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