Role of Hydrodynamics in Bioconvection

Francesco Picella & Hélène de Maleprade

francesco.picella@sorbonne-universite.fr

∂'Alembert - Sorbonne Université - Paris - France

BGUM - Oxford - July 2025

MEDICINE CABINET

FOR COMPARISON.

BUT I THINK THIS

IS THE BASILISK

comic adapted from xkcd.com

Passive fluid: external energy supply

Passive fluid: external energy supply

Buoyancy-Driven $(T \propto \rho)$

i.e.: Rayleigh-Bénard

Passive fluid: external energy supply

Buoyancy-Driven ($T \propto \rho$) i.e.: *Rayleigh-Bénard*

downwelling, dense fluid \rightarrow "plume"

Boussinesq 1903, Thuval 2020

Passive fluid: external energy supply

All the spaghetti was eaten

Buoyancy-Driven $(T \propto \rho)$

i.e.: Rayleigh-Bénard

downwelling, dense fluid → "plume"

Boussinesq 1903, Thuval 2020

Bio-convection

Active fluid: a colony of Chlamydomonas Reinhardtii (CR)

A. Huygues-Despointes, 100x, top view

Bio-convection

Active fluid: a colony of Chlamydomonas Reinhardtii (CR)

A. Huygues-Despointes, 100x, top view

A. Givaudan, 2x. Window size $400 \mu m$

Bio-convection

Active fluid: a colony of Chlamydomonas Reinhardtii (CR)

A. Huygues-Despointes, 100x, top view

A. Givaudan, 2x. Window size $400 \mu m$

Leptos et al. 2013, real time.

Bio-convection, triggering mechanisms* (*) Present state-of-the-art

(*) Present state-of-the-art

1. CR reorients towards gravity (gravitaxis, bottom-heavy)

Kessler 1985

(*) Present state-of-the-art

- 1. CR reorients towards gravity (gravitaxis, bottom-heavy)
- 2. CR swims and accumulates at the air-water surface

Kessler 1985

Bees & Hill 1997

(*) Present state-of-the-art

- 1. CR reorients towards gravity (gravitaxis, bottom-heavy)
- 2. CR swims and accumulates at the air-water surface
- 3. CR-dense layer is heavier than the fluid \rightarrow buoyancy driven instability.

Kessler 1985

Bees & Hill 1997

(*) Present state-of-the-art

- 1. CR reorients towards gravity (gravitaxis, bottom-heavy)
- 2. CR swims and accumulates at the air-water surface
- 3. CR-dense layer is heavier than the fluid \rightarrow buoyancy driven instability.
- 4. **Plumes** impact the bottom, recirculation and rise of convection pattern.

Kessler 1985

Bees & Hill 1997

Experiments Are plumes *really* triggered by the *dense layer*?

Dark spots (cell concentration) first occurring far from the dense layer?

Side view. Height = 1mm, $\Delta t = 2s$, 10fps. Experiment by H. de Maleprade.

Experiments Are plumes *really* triggered by the *dense layer*?

Dark spots (cell concentration) first occurring far from the dense layer?

Side view. Height = 1mm, $\Delta t = 2s$, 10fps. **Experiment by H. de Maleprade.**

Agent-resolved, $Re \ll 1$

▶ Fluid-Solid coupling: $\nabla \cdot \mathbf{u} = 0$, $\nabla^2 \mathbf{u} = \nabla p$

Agent-resolved, $Re \ll 1$

- ► Fluid-Solid coupling: $\nabla \cdot \mathbf{u} = 0$, $\nabla^2 \mathbf{u} = \nabla p$ + boundary conditions
 - meshless methods (e.g. Stokesian Dynamics, Ishikawa 2020, ...)

Agent-resolved, $Re \ll 1$

- ▶ Fluid-Solid coupling: $\nabla \cdot \mathbf{u} = 0$, $\nabla^2 \mathbf{u} = \nabla p + \mathbf{f} + \text{boundary conditions}$
 - meshless methods (e.g. Stokesian Dynamics, Ishikawa 2020, ...)
 - meshed methods (e.g. Fluid Particle, Jibuti Rafai Peyla 2014, ...)

Modelling flagellate microswimmers

Time-averaged flow field around a biflagellate.
Drescher et al. 2010.

Agent-resolved, $Re \ll 1$

- ▶ Fluid-Solid coupling: $\nabla \cdot \mathbf{u} = 0$, $\nabla^2 \mathbf{u} = \nabla p + \mathbf{f} + \text{boundary conditions}$
 - meshless methods (e.g. Stokesian Dynamics, Ishikawa 2020, ...)
 - meshed methods (e.g. Fluid Particle, Jibuti Rafai Peyla 2014, ...)

Modelling flagellate microswimmers

(a) Lushi & Peskin 2012, (b) Drescher et al. 2010, (c) Jibuti et al. 2014, (d) Wan et al. 2019, Friedrich & Julicher 2012. From Ishikawa 2024.

Time-averaged flow field around a biflagellate.
Drescher et al. 2010.

6 / 25

Drescher et al. 2010.

Three point-forces

tHree model of a biflagellate puller.

Three point-forces Drescher et al. 2010.

tHree model of a biflagellate puller.

Why still another model?

Three point-forces Drescher et al. 2010.

Why still another model?

► Same physical model, compatible with multiple resolution methods/scales

Three point-forces Drescher et al. 2010.

Why still another model?

- ► Same physical **model**, **compatible** with **multiple** resolution **methods/scales**
- Access to complex physics (confinement, light, non-linearities...)

Analytical solution
$$U = \frac{F}{6\pi\mu R} \left(1 - \frac{3R\sin^2(\alpha)}{2d} - \frac{3R\cos^2(\alpha)}{4d} + \frac{R^3\sin^2(\alpha)}{2d^3} - \frac{R^3\cos^2(\alpha)}{4d^3} \right)$$

following Kim & Karilla 1991

Analytical solution $U = \frac{F}{6\pi\mu R} \left(1 - \frac{3R\sin^2(\alpha)}{2d} - \frac{3R\cos^2(\alpha)}{4d} + \frac{R^3\sin^2(\alpha)}{2d} - \frac{R^3\cos^2(\alpha)}{2d} \right)$

Analytical solution

$$U = \frac{F}{6\pi\mu R} \left(1 - \frac{3R\sin^{2}(\alpha)}{2d} - \frac{3R\cos^{2}(\alpha)}{4d} + \frac{R^{3}\sin^{2}(\alpha)}{2d^{3}} - \frac{R^{3}\cos^{2}(\alpha)}{4d^{3}} \right)$$

Numerical validation with Stokesian Dynamics https://github.com/rajeshrinet/pystokes

Analytical solution

$$U = \frac{F}{6\pi\mu R} \left(1 - \frac{3R\sin^{2}(\alpha)}{2d} - \frac{3R\cos^{2}(\alpha)}{4d} + \frac{R^{3}\sin^{2}(\alpha)}{2d^{3}} - \frac{R^{3}\cos^{2}(\alpha)}{4d^{3}} \right)$$

- ► Numerical validation with Stokesian Dynamics https://github.com/rajeshrinet/pystokes
- **Velocity** *U* decreases when $d/R \rightarrow 0$

Analytical solution

$$U = \frac{F}{6\pi\mu R} \left(1 - \frac{3R\sin^{2}(\alpha)}{2d} - \frac{3R\cos^{2}(\alpha)}{4d} + \frac{R^{3}\sin^{2}(\alpha)}{2d^{3}} - \frac{R^{3}\cos^{2}(\alpha)}{4d^{3}} \right)$$

following Kim & Karilla 1991

- Numerical validation with Stokesian Dynamics https://github.com/rajeshrinet/pystokes
- **Velocity** *U* **decreases** when $d/R \rightarrow 0$
 - Particle collapsing = 0 thrust = 0 efficiency_{7/25}

HOW I MADE MY FIRST push

Microhydrodynamics with Basilisk

A number of validation available on sandbox/fpicella/README/...

```
#include "grid/quadtree.h"
#include "ghigo/src/myembed.h"
#include "ghigo/src/mycentered.h"
    // -> myviscosity-embed.h -> mypoisson.h
#include "fpicella/src/driver-myembed-particles.h"
    // adapted from sandbox/Antoonvh/tracer-particles.h
int main () {stokes = true;}
```

Velocity BC on embed: ghigo/src/mypoisson.h

projection step: from \boldsymbol{u}^* $(\nabla \cdot \boldsymbol{u}^* \neq 0, \text{ no BC on embed...})$

$$\nabla \cdot (\alpha \nabla p) = \frac{\nabla \cdot \mathbf{u}^* + \mathbf{u}_{embed} \cdot \mathbf{n}}{\Delta t}$$
 (1)

$$\mathbf{u} \leftarrow \mathbf{u}^* - \Delta t \alpha \nabla p \tag{2}$$

A sedimenting cylinder. Validation: Dvinsky Popel 1987.

A general-purpose framework for the tHree model

tHree in Basilisk

finite volume, adaptive mesh...

basilisk.fr/sandbox/fpicella

A general-purpose framework for the tHree model

tHree in Basilisk

finite volume, adaptive mesh...

basilisk.fr/sandbox/fpicella

- quasi-steady Stokes solver basilisk.fr/src/navier-stokes/centered.h
- ► Forces: *smooth kernel* (Cortez 2001)
- Body: high-viscosity blobs (Tanaka & Araki 2000)
- ► Multiple-particle tracking
 basilisk.fr/sandbox/Antoonvh/tracer-particles.h

tHree swimming velocity.
2D Basilisk vs 3D analytic prediction.

Simulating bio-convection: tHree model

microswimmer-driven instabilities. Cell height 64 · R, cell width 512 · R, 512 tHree microswimmers.

Simulating bio-convection: tHree model

microswimmer-driven instabilities. Cell height 64 · R, cell width 512 · R, 512 tHree microswimmers.

Spanwise-averaged intensity. Dense layers forming simultaneously at top and bulk. (statistics ok?)

Local concentration fluctuation **triggers plumes** (?)

Before the onset of *plumes*, **local high cell concentration**:

- 1. observed far from free-surface (role of microhydrodynamics!)
- 2. \rightarrow negative velocity

Kessler 1985

Binary interactions

Loss of hydrodynamic efficiency

- $ightharpoonup \phi = 0$, aligned, variable distance λ .
- ightharpoonup **T** = [0, 4, 0], $\rho = \mu = 1$
- ightharpoonup zero buoyancy $m {f B} = {f 0}$
- identical blob sizes

Binary interactions

Loss of hydrodynamic efficiency

- $ightharpoonup \phi = 0$, aligned, variable distance λ .
- ightharpoonup $T = [0, 4, 0], \
 ho = \mu = 1$
- ightharpoonup zero buoyancy $\mathbf{B} = \mathbf{0}$
- identical blob sizes $R = 1...d = 1...\beta = 1.$

- ightharpoonup below $\lambda/R=3$, contact (unphysical)
- Repulsion (u_x) @ approach (puller)
- **Efficiency** (u_v) drops **@** approach

Binary interactions + negative buoyancy

Identical to previous slide, but with $\boldsymbol{B}<\boldsymbol{0}$

Confinement + added gravity

- decrease swimming velocity...
- ▶ ... up to negative @ approach!

Binary interactions + negative buoyancy

Identical to previous slide, but with ${f B}<{f 0}$

Confinement + added gravity

- decrease swimming velocity...
- ► ... up to negative @ approach!

Goldman, Cox & Brenner, 1966

- Purely sedimenting particles
- $ightharpoonup a/h = \frac{1}{\lambda/h}$
- ► As particle approaches (right), increse in sedimentation speed! 14/25

Plumes without a free-surface

Single Swimmer

Plumes without a free-surface

Single Swimmer

"infinitely tall vertical pipe"

Plumes without a free-surface

Single Swimmer

"infinitely tall vertical pipe"

$$|\mathbf{B}| = |\mathbf{T}| \cdot 0.0\%$$

$$|\mathbf{B}| = |\mathbf{T}| \cdot 2.5^{\circ}$$

Plumes without free-surfaces.

take-home messages

take-home messages

1. Hydrodynamic interaction \rightarrow concentration fluctuation

take-home messages

- 1. Hydrodynamic interaction \rightarrow concentration fluctuation
- 2. Concentration increase \rightarrow hydro. efficiency decrese

take-home messages

- 1. Hydrodynamic interaction \rightarrow concentration fluctuation
- 2. Concentration increase \rightarrow hydro. efficiency decrese
- 3. \rightarrow **sedimentation** kicks-in

sandbox/fpicella/microswimmer_tHree_forces/
 plumes_x_periodic.c

take-home messages

- 1. Hydrodynamic interaction \rightarrow concentration fluctuation
- 2. Concentration increase \rightarrow hydro. efficiency decrese
- 3. \rightarrow **sedimentation** kicks-in

Persp. Numerics + Experiments

► 2D/3D effects?

Single y-periodic plume, experimental proof Kessler 1985

I bet you can not see this with an 'averaged', buoyancy-only model!

Triggering plume \neq sustaining bioconvection

Long-term bioconvection patterns. Top view. Kage *et al.* 2013

Wager 1911 19/25

Binary interactions, non aligned

Binary interactions, full 3D

A. Palotai

Binary interactions + buoyancy, normalized

Eulerian, **averaged**,
$$L \gg \theta$$

$$\frac{D\mathbf{U}}{Dt} = -\mathrm{Sc}\nabla P + \mathrm{Sc}\nabla^2 \mathbf{U}$$

$$\nabla \cdot \mathbf{U} = 0 \tag{4}$$

(5)

Eulerian, **averaged**,
$$L \gg \theta$$

$$\frac{D\mathbf{U}}{Dt} = -\mathrm{Sc}\nabla P + \mathrm{Sc}\nabla^2\mathbf{U}$$

$$-\operatorname{Sc}\cdot\operatorname{Ra}\,\boldsymbol{c}\,\hat{\mathbf{g}}\tag{3}$$

$$\nabla \cdot \mathbf{U} = 0 \tag{4}$$

(5)

(6)

Eulerian, **averaged**,
$$L \gg \theta$$

$$\frac{D\mathbf{U}}{Dt} = -\operatorname{Sc}\nabla P + \operatorname{Sc}\nabla^2 \mathbf{U}
-\operatorname{Sc}\cdot\operatorname{Ra} \mathbf{c} \hat{\mathbf{g}} \tag{3}$$

$$\nabla \cdot \mathbf{U} = 0 \tag{4}$$

$$\frac{\partial c}{\partial t} = -\nabla \cdot ((\mathbf{U} + \mathbf{V}_{c} \langle \mathbf{Q} \rangle)c - \nabla c) \qquad (5)$$

(6)

Eulerian, **averaged**,
$$L \gg \theta$$

$$\frac{D\mathbf{U}}{Dt} = -\operatorname{Sc}\nabla P + \operatorname{Sc}\nabla^2 \mathbf{U}
-\operatorname{Sc}\cdot\operatorname{Ra} \mathbf{c} \,\hat{\mathbf{g}} \tag{3}$$

$$\nabla \cdot \mathbf{U} = 0 \tag{4}$$

$$\frac{\partial c}{\partial t} = -\nabla \cdot ((\mathbf{U} + \mathbf{V}_{c} \langle \mathbf{Q} \rangle)c - \nabla c) \qquad (5)$$

$$\frac{\partial \mathbf{Q}}{\partial t} = \frac{1}{2G} \left(\hat{\mathbf{g}} - (\hat{\mathbf{g}} \cdot \mathbf{Q}) \right) + \frac{\mathbf{\Omega} \times \mathbf{Q}}{2} \tag{6}$$

Eulerian, **averaged**, $L \gg \theta$

$$\frac{D\mathbf{U}}{Dt} = -\operatorname{Sc}\nabla P + \operatorname{Sc}\nabla^2 \mathbf{U}
-\operatorname{Sc}\cdot \operatorname{Ra} \mathbf{c} \hat{\mathbf{g}}$$
(3)

$$\nabla \cdot \mathbf{U} = 0 \tag{4}$$

$$\frac{\partial c}{\partial t} = -\nabla \cdot ((\mathbf{U} + \mathbf{V}_{c} \langle \mathbf{Q} \rangle)c - \nabla c) \qquad (5)$$

$$\frac{\partial \mathbf{Q}}{\partial t} = \frac{1}{2G} \left(\hat{\mathbf{g}} - (\hat{\mathbf{g}} \cdot \mathbf{Q}) \right) + \frac{\mathbf{\Omega} \times \mathbf{Q}}{2} \tag{6}$$

Ra \propto buoyancy, Sc \propto diffusion, $G \propto$ reorientation towards gravity . V_c , CR average swimming velocity Q(x,t), CR average orientation c(x,t), CR average concentration

Harashima et al. 1987

Eulerian, **averaged**, $L \gg \theta$

$$\frac{D\mathbf{U}}{Dt} = -\operatorname{Sc}\nabla P + \operatorname{Sc}\nabla^2 \mathbf{U}
-\operatorname{Sc}\cdot\operatorname{Ra}\,\mathbf{c}\,\hat{\mathbf{g}} \tag{3}$$

$$\nabla \cdot \mathbf{U} = 0 \tag{4}$$

$$\frac{\partial c}{\partial t} = -\nabla \cdot ((\mathbf{U} + \mathbf{V}_{c} \langle \mathbf{Q} \rangle)c - \nabla c) \qquad (5)$$

$$\frac{\partial \mathbf{Q}}{\partial t} = \frac{1}{2G} \left(\hat{\mathbf{g}} - (\hat{\mathbf{g}} \cdot \mathbf{Q}) \right) + \frac{\mathbf{\Omega} \times \mathbf{Q}}{2} \tag{6}$$

 ${
m Ra} \propto {
m buoyancy}, {
m Sc} \propto {
m diffusion},$ ${
m }{
m }{
m }{
m }{
m }{
m }{
m c}$ reorientation towards gravity . ${
m V_c}, {
m CR}$ average swimming velocity ${
m Q}({
m x},t), {
m CR}$ average orientation ${
m }{
m c}({
m x},t), {
m CR}$ average concentration

Pedley & Kessler 1990

Simulating bio-convection: averaged, buoyancy-driven model

In-house implementation with Spectral Element Method Nek5000

Side view. Ra, Sc, G, V_c from Ghorai & Hill 1999

Simulating bio-convection: averaged, buoyancy-driven model

In-house implementation with Spectral Element Method Nek5000

Spanwise-averaged intensity. First top dense layer thinning, then plumes.

I LEARNED IT LAST NIGHT! EVERYTHING IS SO SIMPLE!

HELLO WORLD 15 JUST fprintf (stderr, "HELLO WORLD \n");

I DUNNO...
darcs, MACROS... and
the BVIEW thing!
COME JOIN US!

COME JOIN US!
PROGRAMMING
IS FUN AGAIN!
IT'S A WHOLE
NELL WORLD

NEW WORLD
UP HERE!
BUT HOW ARE
YOU FLYING?

I JUST TYPED
basilisk.fr/sandbox/
Antoonvh/README
THAT'S IT?
... I ALSO SAMPLED

... I ALSO SAMPLED EVERYTHING IN THE MEDICINE CABINET FOR COMPARISON.

BUT I THINK THIS