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What is surfactant?

3

Desorption

Adsorption
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Present work

Why is it a challenge to compute them?
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Governing equations
• Flow part:

𝜌(
𝜕𝐮

𝜕𝑡
+ 𝐮 ⋅ 𝛻𝐮) = −𝛻𝑝 + 𝛻 ⋅ (𝜇(𝛻𝐮 + 𝛻𝑇𝐮)) + 𝛾𝜅𝛿𝑠𝐧 + 𝛿𝑚𝛻𝑠𝛾𝐭

𝛻 ⋅ 𝐮 = 0

•Interface part:
𝜕𝑓

𝜕𝑡
+ 𝐮 ⋅ 𝛻𝑓 = 0

𝜕𝜙

𝜕𝑡
+ 𝛻 ⋅ 𝐮𝜙 = 𝛻 ⋅ (𝜁(𝜖𝛻𝜙 −

1

4
[1 − tanh2(

𝜓

2𝜖
)]

𝛻𝜓

|𝛻𝜓|
))

𝜓 = 𝜖log(
𝜙 + 𝜀

1 − 𝜙 + 𝜙
)

•Surfactants part:
𝜕𝑐𝑏

𝜕𝑡
+ 𝛻 ⋅ (𝐮𝑐𝑏) = 𝛻 ⋅ (𝐷𝑏𝛻𝐜𝐛 − 𝐷𝑏

1 − 𝜙

𝜖
𝐧𝑐𝑏) + 𝑗𝛿𝑠

𝜕𝑐𝑖

𝜕𝑡
+ 𝛻 ⋅ (𝐮𝑐𝑖) = 𝛻 ⋅ (𝐷𝑖𝛻𝐜𝐢 − 𝐷𝑖

2(0.5 − 𝜙)

𝜖
𝐧𝑐𝑖) − 𝑗𝛿𝑠

𝑗 = 𝑟𝑎

𝑐𝑏

𝜙
(𝑐𝑖,∞ −

𝑐𝑖

𝛿𝑠
) − 𝑟𝑏

𝑐𝑖

𝛿𝑠
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Navier-Stokes equations:

VoF method:

Phase field method:

Interfacial surfactant concentration 𝑐𝑖:

Bulk surfactant concentration 𝑐𝑏::

Adsorption term Desorption term

S. S. Jain, « Modeling soluble surfactants in two-phase flows », (2023)



Solvers used

• Poisson.h —> 𝛻 ⋅ (𝛼𝛻𝑎) + 𝜆𝑎 = 𝑏

• Diffusion.h —> 𝜃
𝜕𝑓

𝜕𝑡
= 𝛻 ⋅ (𝐷𝛻𝑓) + 𝛽𝑓 + 𝑟

• Henry.h —> 
𝜕𝑐

𝜕𝑡
= 𝛻 ⋅ (𝐷𝛻𝑐 + 𝛽𝑐)

• Tracer.h —> 
𝜕𝑓

𝜕𝑡
+ 𝐮 ⋅ 𝛻𝑓 = 0

• Strategy: Combine Diffusion.h with Tracer.h and Henry.h using Poisson.h 

• Problem: Need a source term, we need to implement 𝜆 in the Henry.h
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Time discretisation

• Euler implicit method for the diffusion and source terms:

𝑑𝐮

𝑑𝑡
= 𝑓(𝐮, 𝑡) ⇒

𝐮𝑛+1 − 𝐮𝑛

Δ𝑡
= 𝑓(𝐮𝑛+1, 𝑡𝑛+1)

• Euler explicit for the advection term:

𝑑𝐮

𝑑𝑡
= 𝑓(𝐮, 𝑡) ⇒

𝐮𝑛+1 − 𝐮𝑛

Δ𝑡
= 𝑓(𝐮𝑛, 𝑡𝑛)
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Space discretisation

• Finite volume method with constant grid and AMR:

𝑢𝑖 =
1

Δ
∫𝐾𝑢(𝐱, 𝑡)𝑑𝑉

• Have to solve a conservative equation: 

𝜕𝑢

𝜕𝑡
+ 𝛻 ⋅ 𝐅(𝑢) = 0
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Courant-Friedrichs-Lewy criterion 
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Δ𝑡diff =
Δ𝑥2

2𝐷
≤

1

2
Δ𝑡conv =

Δ𝑥

𝑢eff
≤ 1

Δ𝑡 ≤ min(Δ𝑡conv, Δ𝑡diff)

Δ𝑥

𝑢eff
≥

Δ𝑥2

2𝐷
⇒ Δ𝑥 ≤

2𝐷

𝑢eff
=

2𝐷

|𝑢|max +
𝐷
𝜖

Δ𝑥 ≤
2𝐷

|𝑢|max +
𝐷
𝜖

Δ𝑡 ≤
Δ𝑥2

2𝑁𝑑𝐷

𝑢eff = |𝑢|max +
𝐷

𝜖

Convective term Anti-diffusion term



Comparisons with analytical solutions

Test cases
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Expanding circle 3D

𝑐𝑖(𝑡) = 𝑐𝑖(0)𝑒−2𝐾𝑡
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H. A. Stone, « A simple derivation of the time-dependent convective-diffusion equation for surfactant transport along a deforming interface », Phys. Fluids (1990)

Farsoiya et al., « Coupled volume of fluid and phase field method for direct numerical simulation of insoluble surfactant-laden interfacial flows and application to rising bubbles », Phys. Fluids (2024)
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Surfactant adsorption 2D

𝑐𝑏,∞−𝑐𝑏(𝑟,𝑡)

𝑐𝑏,∞
=

𝑟𝑎 𝜋𝐷𝑖𝑡/𝐷𝑖

1+
𝜋𝐷𝑖𝑡

𝑎
(1+

𝑎𝑟𝑎
𝐷𝑖

)

𝑎

𝑟
erfc

𝑟−𝑎

2 𝐷𝑖𝑡

𝑐𝑖(𝑡) = 𝑐𝑖(0) + 𝑟𝑎𝑐𝑏,∞(𝑡 −
𝜔ℎ

𝜂3 (𝜂2𝑡 − 2𝜂 𝑡 + 2log(1 + 𝜂 𝑡)))
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No surfactant can enter inside the droplet



Surfactant adsorption 2D
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Muradoglu et al., « A front-tracking method for computation of interfacial flows with soluble surfactants », Journal Comp. Phys., (2008)
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Qualitative analysis without comparison with analytical solutions

Test cases
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Rayleigh-Taylor instability 2D
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Bo =
gravitational effect

capillary effect
=

𝜌𝑙𝑔𝐿2

𝛾0

Oh =
viscous effect

inertial−capillary effect
=

𝜇𝑙

𝜌𝑙𝛾0𝐿

Pe =
convective effect

diffusive effect
=

𝑈𝐿

𝐷

Ma =
shear force due to𝛻𝛾

diffusive effect
=

𝛽𝛾0

𝜇𝑙𝑈



Rayleigh-Taylor instability 2D
Influence of the the Marangoni number with insoluble surfactants on the Rayleigh-Taylor instability
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𝑀𝑎 = 1



Rayleigh-Taylor instability 2D
Influence of the the Marangoni number and the desorption on the Rayleigh-Taylor instability
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𝑀𝑎 = 6

𝑟𝑑 = 10



Rayleigh-Taylor instability 2D
Influence of the the Marangoni number and the adsorption on the Rayleigh-Taylor instability
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𝑀𝑎 = 6

𝑟𝑎 = 1



Rising bubble 3D
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𝜌𝑙

𝜌𝑏
= 1000, 

𝜇𝑙

𝜇𝑏
= 100, 𝐵𝑜 =

𝜌𝑙𝑔𝑑𝑏
2

𝛾0
= 10, 𝐺𝑎 =

𝜌𝑙𝑑𝑏 𝑔𝑑𝑏

𝜇𝑙
= 100, 𝑃𝑒 =

𝑑𝑏 𝑔𝑑𝑏

𝐷𝑖
= 100 and 𝑀𝑎 =

𝛽𝛾0

𝑔𝑑𝑏𝜇𝑙



Without surfactant

Rising bubble 3D
Trajectory instability 
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Insoluble surfactant 𝑀𝑎 = 1 Soluble surfactants Ma = 1, 𝑟𝑑 = 1, 𝑟𝑎 = 0.01

Fernández-Martínez et al. « Transient bubble rising in the presence of a surfactant at very low concentrations » International Journal of Multiphase Flow, (2025)



Without surfactants

Rising bubble 2D Axi-symmetric
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Bo =
gravitational effect

capillary effect

Ga =
gravitational effect

viscous effect

Pe =
convective effect

diffusive effect

Ma =
shear force due to𝛻𝛾

diffusive effect



Rising bubble 2D Axi-symmetric
It is insoluble surfactants in those simulations

With insoluble surfactants 𝑀𝑎 = 1 With insoluble surfactants 𝑀𝑎 = 2026



Rising bubble 2D Axi-symmetric
Influence of the Marangoni number on the deformation of the interface
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𝑧 −axis

𝑟
−

ax
is

𝑀𝑎 = 0𝑀𝑎 = 1𝑀𝑎 = 2
𝑀𝑎 = 3𝑀𝑎 = 4

𝑀𝑎 = 5
𝑀𝑎 = 20

At a specific time



With soluble surfactants 𝑀𝑎 = 1, 𝑟𝑑 = 0.1

Rising bubble 2D Axi-symmetric
Only the desorption 𝑟𝑑  is considered in those simulations

28 With soluble surfactant 𝑀𝑎 = 20, 𝑟𝑑 = 0.1



Rising bubble 2D Axi-symmetric

Influence of the desorption on the deformation of the interface

𝑧 −axis

𝑟
−

ax
is
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With soluble surfactants 𝑀𝑎 = 20, 𝑟𝑑 = 1

Rising bubble 2D Axi-symmetric
Only the desorption 𝑟𝑑  is considered in those simulations

30With soluble surfactants 𝑀𝑎 = 1, 𝑟𝑑 = 1
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Rising bubble 2D Axi-symmetric

𝑧 −axis

𝑟
−

ax
is

Influence of the desorption on the deformation of the interface



Rising bubble 2D Axi-symmetric

Without surfactants 𝑀𝑎 = 0 With insoluble surfactants 𝑀𝑎 = 20
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Rising bubble 2D Axi-symmetric

Only the desorption 𝑟𝑑  is considered in those simulations

With soluble surfactants 𝑀𝑎 = 1, 𝑟𝑑 = 0.1 With soluble surfactants 𝑀𝑎 = 20, 𝑟𝑑 = 0.1
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Rising bubble 2D Axi-symmetric

Only the desorption 𝑟𝑑  is considered in those simulations

With soluble surfactant 𝑀𝑎 = 20, 𝑟𝑑 = 1, 𝑡
˜

= 0.53With soluble surfactant 𝑀𝑎 = 20, 𝑟𝑑 = 1, 𝑡
˜

= 0.19
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Summarise/Next step

• Soluble surfactants for 2D/2D-Axis/3D configuration + AMR

• Open source sandbox/haouche - release soon

• Find some others test cases (with analytical solution)

• Use it for the soap film
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Project: YouTube Channel

36

@ilies2924
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