

Wetting effects on the dynamics of droplets and bubbles at surfaces

Yifan Han¹, Kerstin Eckert^{1,2}, Gerd Mutschke¹

- 1 Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics, Dresden, Germany
- 2 Technical University of Dresden, Institute of Process Engineering and Environmental Technology, Dresden, Germany

1. Wetting

Wetting describes how a liquid spreads on or adheres to a solid surface.

Static contact angle (θ_s)

Hydrophobic $\theta_s > 90^{\circ}$

Hydrophilic $\theta_s < 90^{\circ}$

Applications:

> Droplets

Cooling

Coating

Bubbles

Water Electrolysis

Boiling

Droplet impact

Bubble growth

Sketch of contact line

number (contact velocity)

$$Ca = \mu U_{CL}/\gamma$$

Microscopic

Macroscopic

^[1] Yokoi et al. Physics of Fluids, 2009, 21(7).

^[2] Li et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects 673 (2023): 131879.

3. Literature Review

Level-Set Method:

Interface normal projection

Spelt. 2005 JCP, Yokoi et al. 2009 POF, Zhang et al. 2020 JCP.

Phase-Field Method

Surface-energy formulation

Ding et al. 2007 PRE, Yue et al. 2010 JFM, Yue et al. 2011 POF.

Volume of Fluid Method

Height function

Afkhami et al. 2009 JCP,

Dupont & Legendre 2010 JCP,

Fullana et al. 2025.

(Interfacial cell center velocity)

(Interpolation velocity at f=0.5)

(Time derivative of the contact line)

Continuous interface

Sharp interface

4. Droplet spreading on a surface

Axisymetric setup

Volume of Fluid method

$$\rho = (1 - f)\rho_g + f\rho_l, \quad \mu = (1 - f)\mu_g + f\mu_l.$$

Piecewise linear interface construction (PLIC) method.

Flow fields & interface motion

$$\nabla \cdot \vec{u} = 0,$$

$$\frac{\partial \vec{u}}{\partial t} + \vec{u} \cdot \nabla \vec{u} = -\frac{1}{\rho} \nabla p + \frac{1}{\rho} \nabla \cdot \left\{ \mu [\nabla \vec{u} + (\nabla \vec{u})^T] \right\} + \vec{g} + \gamma \kappa \vec{n} \delta_{\Sigma},$$

Contact line velocity

Weber number We=31.7

Initial radius: R = 1.14 mm

Initial velocity: V = 1.0 m/s

$\theta_s(^{ m o})$	$\theta_a(^\circ)$	$\theta_r(^\circ)$	$\xi_a(\text{Pa}\cdot\text{s})$	$\xi_r(\text{Pa}\cdot\text{s})$	C	ϵ
90	109.5	72	0.002	0.002	2×10^{4}	1.0×10^{7}

Apparent contact angle

$$\theta_{local} = \arccos\left\{\cos\theta_s - \frac{\xi Ca}{\mu} - \frac{C_{pin}\tanh(C*Ca)}{\gamma}\right\}$$

$$\theta_{app}^3 = \theta_{local}^3 + 9Ca\ln(\epsilon)$$

Microscopic Macroscopic

[2] Dwivedi et al. Physical Review Fluids, 2022, 7(3): 034002.

[1] Yokoi et al. Physics of Fluids, 2009, 21(7).

Axisymetric setup

[1] Gennari et al. Chemical Engineering Science 259 (2022): 117791.

Flow fields & interface motion

$$\begin{split} \nabla \cdot \vec{u} &= \dot{m} \left(\frac{1}{\rho_g} - \frac{1}{\rho_l} \right) \delta_{\Sigma}, \\ \frac{\partial \vec{u}}{\partial t} &+ \vec{u} \cdot \nabla \vec{u} = -\frac{1}{\rho} \nabla p + \frac{1}{\rho} \nabla \cdot \left\{ \mu [\nabla \vec{u} + (\nabla \vec{u})^T] \right\} + \frac{\vec{f_{\gamma}}}{\rho} + \vec{g}, \end{split}$$

Species transport & mass flux

$$\begin{split} &\frac{\partial \alpha}{\partial t} + \nabla \cdot (\alpha \vec{u}) = -\frac{\dot{m}}{\rho_l} \delta_{\Sigma}, \\ &\frac{\partial c}{\partial t} + \vec{u} \cdot \nabla c = \nabla \cdot (D \nabla c) - \frac{\dot{m}}{M_a} \delta_{\Sigma}, \\ &\dot{m} = \frac{M_g D}{1 - \rho_g / \rho} \frac{\partial c}{\partial \vec{n}_{\Sigma}}, \end{split}$$

Adaptive Mesh Refinement

Navier-slip BC

Contact line velocity

Apparent contact angle

$$heta_{local} = \arccos\left\{\cos\theta_s - \frac{\xi Ca}{\mu} - \frac{C_{pin} \tanh(C*Ca)}{\gamma}\right\}$$
 Microscopic $heta_{app}^3 = heta_{local}^3 + 9Ca\ln(\epsilon)$ Macroscopic

[2] Dwivedi et al. Physical Review Fluids, 2022, 7(3): 034002.

Validation

Initial setup:

- Oxygen bubble in oversaturated water;
- Bubble radius from 10 to 100 um;
- Initial contact angle: 90°;
- Oversaturation ratio: $\zeta = \frac{c_b c_s}{c_s} = 7$;
- Dynamic wetting curve:

Issue of slow growth rates

	Boiling	Oversaturation Growth
Mass transfer rate	$10^{-3} \sim 10^{-1} \text{ kg/m}^2 \cdot \text{s}$	$10^{-7} \sim 10^{-3} \text{ kg/m}^2 \cdot \text{s}$
Timescale	Milliseconds to seconds	Seconds to Minutes
Dominant force	Inertia force	Surface tension force

Rescaling contact velocity

$$U_{cl,res} = U_{cl,sim} \cdot \frac{D}{D_{sim}}$$

$$t = t_{sim} \cdot \frac{D_{sim}}{D}$$

Issue of slow growth rates

Concentration gradient

Bubble shapes

Validation with experimental results of single air bubble growth on two surfaces

- [1] Li et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects 673 (2023): 131879.
- [2] Han et al. Int. J. Multiph. Flow, 2025, accepted.

Methodology

Velocity projection

$$\eta = \tan^{-1}\left(\frac{n_z}{n_x}\right)$$
$$\vec{u}_{cl} = (\mathbf{u}_{\mathbf{x}}\cos\eta + u_z\sin\eta)\vec{e}_{\eta}$$

If
$$\vec{u}_{cl} \cdot \vec{n}_{xz} > 0$$
, advancing If $\vec{u}_{cl} \cdot \vec{n}_{xz} < 0$, receding

$$\theta = \theta(\vec{u}_{cl})$$

xz-plane

Geometrical interface interpolation

The contact angle need to be set at each point. $u_{cl,i} \rightarrow \theta_i$

[1] Han et al. 2025, in preparation.

Algorithm of contact line velocity interpolation

- Identify all the interfacial cells at the first grid layer.
- 2. Compute the interface normal vector of *n* each cell.
- 3. Compare the absolute values of n_x and n_z .
- 4. Compute the gradient of f in the normal direction. $\frac{\partial f}{\partial n} \approx \frac{f(P_1) f(P_{-1})}{\overline{P_1 P_{-1}}}$
- Perform a linear interpolation of x and z velocity components.

$$u_{x/z,interp} = u_{x/z}(P_0) + \frac{u_{x/z}(P_0) - u_{x/z}(P_{adj})}{f_{P_0} - f_{P_{adj}}} (f_{0.5} - f_{P_0})$$

Case 1: A spreading droplet on a solid surface (low Weber number)

Weber number We=31.7

Initial radius: R = 1.14 mm

Initial velocity: V = 1.0 m/s

Bottom: no-slip BCs & dynamic wetting model

$\theta_s(^\circ)$	$\theta_a(^\circ)$	$\theta_r(^\circ)$	$\xi_a(\text{Pa}\cdot\text{s})$	$\xi_r(\text{Pa}\cdot \text{s})$	C	ϵ
90	109.5	72	0.002	0.002	2×10^{4}	1.0×10^{7}

[1] Yokoi et al. Physics of Fluids, 2009, 21(7).

Case 2: A splashing droplet on hydrophilic surfaces (high Weber number)

Initial perturbation of droplet radius

$$R_{0,p} = R_0 \left[1 + A_p \cos(2\pi N x) \cos(2\pi N z) \right]$$

Bottom: no-slip BCs & dynamic wetting model

	$\theta_s(^\circ)$	$\theta_a(^\circ)$	$\theta_r(^\circ)$	$\xi_a(\text{Pa}\cdot\text{s})$	$\xi_r(\text{Pa}\cdot\text{s})$	C	ϵ
PFAC ₈	120	130	95	0.0001	0.01	2×10^{4}	1.0×10^{4}
Glaco	140	147	133	0.0025	0.0025	1	1.0×10^{4}

	R_0 (mm)	u_0 (m/s)	We
PFAC8	1.224	2.34	187
Glaco	1.356	2.09	167

$$t = 0.3 \text{ ms}$$

Case 2: A splashing droplet on hydrophilic surfaces (high Weber number)

Water on PFAC8

Water on Glaco

Case 3: A sliding droplet on inclined surfaces

Thiols

-0.006-0.004-0.002 0.000 0.002 0.004 0.006 0.008 Ca

Case 3: A sliding droplet on inclined surfaces

PS-gold ITO-glass Thiols

[1] Li et al. Nature communications, 2023, 14(1): 4571.

Case 3: A sliding droplet on inclined surfaces

[1] Li et al. Nature communications, 2023, 14(1): 4571.

Case 3: A sliding water droplet on inclined surfaces

Dynamic vs Static models

[1] Li et al. Nature communications, 2023, 14(1): 4571.

Contact line velocity

PS-gold---- $\alpha = 50^{\circ}$

0.5

The ratio of length to width

Bubble coalescence on a hydrophilic surface

[1] Zhao et al. Langmuir 38.34 (2022): 10558-10567

Air-water: $R0 = 100 \mu m$

7. Bubble coalescence on structured surfaces

Static contact angle model

[1] Tavares et al. Computer & Fluids (2024)

(Embedded Boundary Method)

h=40um, w=200um R0 = 100 um, CA = 120°

8. Conclusions and Outlook

Conclusions:

- ➤ A dynamic wetting model is implemented in 2D and 3D.
- Validated for oversaturation driven bubble growth.
- Validated for droplet spreading, splashing, and sliding.

Outlook:

- Bubble coalescence on different surfaces.
- Bubble detachment.
- > Bubbles in shear flow.

Thanks for listening!

Email: yi.han@hzdr.de

Acknowledgment: The project H2Giga-SINEWAVE-Oxysep

AP1. Dimensionless equations

$$\operatorname{Re} = \frac{\rho_l D}{\mu_l}, \qquad \operatorname{We} = \frac{\rho_l D^2}{\gamma R_0}, \qquad \operatorname{Fr} = \frac{D}{\sqrt{g R_0^3}}.$$

$$\nabla^* \cdot \vec{u}^* = \frac{\zeta}{He(1 - \rho_g^*/\rho^*)} (1 - \rho_g^*) \frac{\partial c^*}{\partial \vec{n}_\Sigma} \delta_\Sigma^*,$$

$$\frac{\partial \vec{u}^*}{\partial \tau^*} + \vec{u}^* \cdot \nabla^* \vec{u}^* = -\frac{\nabla^* p^*}{\rho^*} + \frac{1}{\rho^* \operatorname{Re}} \nabla^* \cdot \left\{ \mu^* [\nabla^* \vec{u}^* + (\nabla^* \vec{u}^*)^T] \right\} + \frac{\kappa^* \vec{n}_\Sigma \delta_\Sigma^*}{\rho^* \operatorname{We}} + \frac{\vec{z}}{F^2} \vec{z},$$

$$\frac{\partial \alpha}{\partial \tau^*} + \nabla^* \cdot (\alpha \vec{u}^*) = -\frac{\zeta}{He(1 - \rho_g^*/\rho^*)} \rho_g^* \frac{\partial c^*}{\partial \vec{n}_\Sigma} \delta_\Sigma^*,$$

$$\frac{\partial c^*}{\partial \tau^*} + \vec{u}^* \cdot \nabla^* c^* = \nabla^* \cdot (\nabla^* c^*) - \frac{1}{(1 - \rho_g^*/\rho^*)} \frac{\partial c^*}{\partial \vec{n}_\Sigma} \delta_\Sigma^*,$$

AP2. Bubble departure on solid surface

Experiments in Fluids (2020) 61:83 https://doi.org/10.1007/s00348-020-2919-7

RESEARCH ARTICLE

Influence of wetting conditions on bubble formation from a submerged orifice

H. Mirsandi¹ · W. J. Smit¹ · G. Kong¹ · M. W. Baltussen¹ · E. A. J. F. Peters¹ · J. A. M. Kuipers¹

Received: 16 October 2019 / Revised: 13 January 2020 / Accepted: 13 February 2020 / Published online: 2 March 2020 © The Author(s) 2020

Dimensional parameters rho_I = 998 rho_g = 1.25 mu_I = 1.0e-3 mu_g = 1.82e-5 F_sigma = 0.0725 Domain width (W): 12 mm Gravity: 9.8 m/s^2 R_injec = 0.5 mm

