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Motivation
Singularities and jumps naturally appear in physical systems

How to deal with them numerically??

Navier-Stokes equations

Sharp limit equations

∇ ·
(

1
ρi
∇pi

)
= ∇ · (ui · ∇ui )

∂ui
∂t + ui · ∇ui = − 1

ρi
∇pi + νi∇ · (2D i )

Jump conditions [A] = A2 − A1

[u] = ṁ(1/ρ1 − 1/ρ2) [μn · D · t ] = 0

[p] = −σκ+ 2[μnIDnI ] + ... [ 1
ρn · ∇p] = [ 1

ρn · (∇ · (2μD))]
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Motivation
Sharp interface

∇ · (Di∇φi) = s

D1

D2
φ2

φ1

[φ] = F

[n · ∇φ] = G

One fluid model
f = 0.5− n

∆ , n ∈ [−∆/2; ∆/2]

D̃ = D1

S = 0

f = 1

∆

φ̃

φ̃

D̃(f )
S(f )

D̃ = D2

S = 0

f = 0

∇ · (D̃∇φ̃) = s + S

It filters φ with bandwidth ∆ along discontinuities by:

Defining averaged properties: D̃(f )

Replacing jump conditions by aritificial sources S(f ,∆,F ,G)
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Capturing jumps
Consider the Poisson equation
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Vble jump: [φ] = F = 1

Flux jump: [n · ∇φ] = 0

s=1 inside, D1 6= D2

Analytical solution:
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Capturing jumps
∇ · (Di∇φi) = si i = 1,2

∇ · (D̃∇φ̃) = si +∇ · (−FD̃∇f )

Analytical solution: ∆
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Capturing jumps
∇ · (Di∇φi) = si i = 1,2

∇ · (D̃∇φ̃) = si +∇ · (−FD̃∇f )

Analytical solution: ∆

Inner region
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ZOOMED VIEW→

L1 error norm ∼ ∆

L∞ norm does not converge

Derivatives diverge
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Capturing jumps
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Capturing jumps
∇ · (Di∇φi) = si i = 1,2

∇ · (D̃∇φ̃) = si +∇ · (−FD̃∇f )

Numerical solution

h: grid size

∆: Reg length

Inner region

L1 error norm ∼ ∆

L∞ norm does not converge

Derivatives diverge

Outer region

Solution is O(∆)

Variables have physical meaning
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Capturing jumps
∇ · (Di∇φi) = si i = 1,2

∇ · (D̃∇φ̃) = si +∇ · (−FD̃∇f )
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Variables have physical meaning
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Capturing jumps
∇ · (Di∇φi) = si i = 1,2
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Capturing jumps
∇ · (Di∇φi) = si i = 1,2
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Numerical solution
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Variables have physical meaning

Regularization controls

even in the limit h = ∆

Can we do better?
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Another analytical example
D1 6= D2 is sufficient to have O(∆) errors

∇ · (D1∇φ1) = 1

∇ · (D2∇φ2) = 0

D1 = 1 D2 = 10

[φ] = 0

[D ∂φ
∂n ] = 0

Derivatives discontinuous

VOF (sharp?) + Second order solver= 1st order convergence
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Problem setup
HOW DOES THE ERROR BEHAVE?

εδ = φi − φ̃
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Three problems:
1) ε = φi − φ̃∇ · (Di∇φi) = s

Jump conditions at n=0

[φsharp] = F(x I)

[D ∂φsharp

∂n ] = G(x I)

2) s̃ = s + S (arbitrary S artificial model)∇ · (D̃∇φ̃) = s̃

[φ̃] = 0

D̃[
∂φ̃
∂n ] = 0

–
———————————-

3) ∇ · (Di∇εi) = ∇ · ((Di − D̃)∇φ̃)− (s̃ − si)

[ε] = F(x I)

[D ∂ε
∂n ] = G(x I)− [D]

∂φ̃
∂n

:-) The inverse problem is closed!

...How to solve for it???
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Error equation

Inner Problem

∇ · (Di∇εi) = ∇ · ((Di − D̃)∇φ̃)− (s̃ − si)

[ε] = F(x I)

[D ∂ε
∂n ] = G(x I)− [D]

∂φ̃
∂n

◦ → n = ∆/2
◦ → n = −∆/2
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Error equation

Inner Problem x → (x I , f )

∇ · (Di∇εi) = ∇ · ((Di − D̃)∇φ̃)− (s̃ − si)

[ε] = F(x I)

[D ∂ε
∂n ] = G(x I)− [D]

∂φ̃
∂n

◦ → f = 1
◦ → f = 0

∇ · (D2∇ε2) = 0 Outer Problem fluid 2

∇ · (D1∇ε1) = 0 Outer Problem fluid 1
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Error equation
To solve for the outer problem we just need effective jump conditions

◦ → f = 1
◦ → f = 0

∇ · (D2∇ε2) = 0 Outer Problem fluid 2

∇ · (D1∇ε1) = 0 Outer Problem fluid 1

[[D ∂ε′
∂n ]] = D2

∂ε̃
∂n

∣∣∣∣
f =0
− D2

∂ε̃
∂n

∣∣∣∣
f =1

[[ε′]] = ε̃(f = 0)− ε̃(f = 1)

We integrate the error equation along the normal direction to get jumps

The outer solution fixes the integration constant

Daniel Fuster



Error equation
To solve for the outer problem we just need effective jump conditions

◦ → f = 1
◦ → f = 0

∇ · (D2∇ε2) = 0 Outer Problem fluid 2

∇ · (D1∇ε1) = 0 Outer Problem fluid 1

[[D ∂ε′
∂n ]] = D2

∂ε̃
∂n

∣∣∣∣
f =0
− D2

∂ε̃
∂n

∣∣∣∣
f =1

[[ε′]] = ε̃(f = 0)− ε̃(f = 1)

We integrate the error equation along the normal direction to get jumps

The outer solution fixes the integration constant

Daniel Fuster



Expansion of the Regularized solution in the inner region

∇ · (D̃∇φ̃) = s̃ → J̃n ≡ − 1
∆ D̃ ∂φ̃

∂f

∂J̃n
∂f −K∆J̃n =

(
D̃∇sφ̃− si − S

)
∆

D̃(f ) and S determines the structure of φ̃ in the inner region

and ultimately the structure of the error fields associated

φ̃→ ε̃i = φi − φ̃
J̃n → J

Di
=

∂φ
∂n −

∂φ̃
∂n
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Expansion of the Regularized solution in the inner region

∇ · (D̃∇φ̃) = s̃ → J̃n ≡ − 1
∆ D̃ ∂φ̃

∂f

∂J̃n
∂f −K∆J̃n =

(
D̃∇sφ̃− si − S

)
∆

D̃(f ) and S determines the structure of φ̃ in the inner region

and ultimately the structure of the error fields associated

Example

S = −∇ · (D̃F∇f ) + Gδs

φ̃(x ,∆) = φ̃(0)(x , f ) + φ̃(1)(x , f )∆ + φ̃(2)(x , f )∆2 + . . . .,
J̃n(x ,∆) = J̃(−1)

n (x ,f )
∆ + J̃(0)

n (x , f ) + J̃(1)(x , f )∆ + J̃(2)
n (x , f )∆2 + . . . .
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O(∆−1) and O(1) solutions
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Approx. O(1) ∇ · (D̃∇φ̃) = s̃

Model s̃ = −∇ · (D̃F∇f ) + Gδs

[φ] = F

[∇φ · nI ] = GOuter error problem

[[ε′i ]] = O(∆)

[[Jεi ]] = O(∆)

Inner error problem

ε̃ ≈ F(f − fi) +O(∆)

∂φi
∂n −

∂φ̃
∂n ≈ −

1
∆DiF +

(
1
Di
− 1

D̃

)
J̃n

(0)
+G(f − fi) +O(∆)

Contributions due to [φ], [∇φ · nI ] and [D]
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O(∆) inner solution reconstruction for primitive variables:

φi ≈ φ̃+ F(f − fi) +O(∆)
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Example of O(∆) inner solution reconstruction for derivatives

∂φi
∂n ≈

∂φ̃
∂n +O(1)
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Example of O(∆) inner solution reconstruction for derivatives

∂φi
∂n ≈

∂φ̃
∂n −

F
∆ +

(
1
Di
− 1

D̃

)(
J̃n − FD̃

∆

)
+ G

Di
(f − fi) +O(∆)
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O(∆) solution
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Approx. O(∆)

Model generalization S = −∇ · (D̃F∇f ) + Gδs

Outer error correction ∇ · (Di∇ε′i) = 0

[[ε′(1)]] = J̃n(x I)f1(D̃)− F(x I)
∆ D̃f1(D̃) + G(x I)f2(D̃)

[[J ′(1)
ε ]] = Lt (φ̃)

∣∣∣∣
n=0

f3(D̃)− Lt (F)f4(D̃)

fi(D̃): are functions of the regularization law

Error escapes into the bulk at O(∆) Need to solve a PDE to obtain it

The error depends on the solution/jump structure

but not on curvatuve!!

Not general/optimal averaging rule exists
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Not general/optimal averaging rule exists
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Approx. O(∆)

Model generalization S = −∇ · (D̃F∇f ) + Gδs

Outer error correction ∇ · (Di∇ε′i) = 0
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Approx. O(∆)

Model generalization S = −∇ · (D̃F∇f ) + G(x I)δs

Inner error correction

ε̃
(1)
i = ε′i(ni)−∆

∫ f
fi

(
1
Di
− 1

D̃

)
J̃(0)

n df −∆G(x I)
(f−fi )2

2Di

J̃ (1)
εi
Di

=
J ′εi (ni )

Di
+ ∆Lt (F(x I))1

2(f − fi)2

Integration constants ε′i J ′εi depend on the outer problem
Depends on the regularization law

Example for F = 0 and G = 0
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O(∆) correction (O(∆2) reconstruction)
1) Compute solution
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O(∆n) solution

The same procedure can be generalized to arbitrary order to obtain the errors
at order O(∆n) from O(∆n−1)

Daniel Fuster



Analytical Validation (without jumps):

We analyze problems with interfaces where φ(sharp) and φ̃
can be analytically computed

�1D Laplace equation
 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5  0  0.5  1

φ

x

∆ = 0.1
∆ = 0.05

sharp

�1D Poisson equation

�2D Laplace equation for plannar interface

0.4 0.2 0.0 0.2 0.4
Y

0.0

0.2

0.4

0.6

0.8

1.0

X

0.00

0.12

0.24

0.36

0.48

0.60

0.72

0.84

0.96

�2D Laplace equation for curved interface
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[Fuster & Mimoh, JCP, 2024]
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Analytical Validation (with jumps):

We analyze problems with interfaces where φ(sharp) and φ̃
can be analytically computed

�Sphere with variable jump

�Sphere with flux jump

�2D Laplace equation with jump

�Complex problem

[Fuster & Sultan, under review]
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Applications:
To understand the variables influencing regularization errors

Inside regularization variables (derivatives) can be unphysical

First order errors are proportional to normal flux and surface Laplacian

Errors related to curvature appear at second order!

For κ∆� 1 a new AMR criterion is required??

Daniel Fuster
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Applications:
To understand the variables influencing regularization errors

Inside regularization variables (derivatives) can be unphysical

First order errors are proportional to normal flux and surface Laplacian

Errors related to curvature appear at second order!

To compensate for these errors to improve accuracy
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Example of inner solution reconstruction:
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Laplace 2D with jump
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Laplace 2D with jump
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Applications:
To understand the variables influencing regularization errors

Inside regularization variables (derivatives) can be unphysical

First order errors are proportional to normal flux and surface Laplacian

Errors related to curvature appear at second order!

To compensate for these errors to improve accuracy

Correcting errors allow natural coupling between physical models

We can discuss the accuracy of different filtering techniques

and design optimal models for S
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Navier–Stokes
Artificial sources in the One fluid model

∂u
∂t + u · ∇u = − 1

ρ̃∇p + 1
ρ̃∇ · (2μ̃D) +σκ

ρ̃ ∇f

∇ ·
(

1
ρ̃∇p

)
= ∇ · (u · ∇u) + ∇ · ( 1

ρ̃∇ · (2μ̃D)) + ∇ · (σκρ̃ ∇f )

Jump conditions [A] = A2 − A1

[u] = 0 [μn · D · t ] = 0

[p] = 0 [ 1
ρn · ∇p] = 0

Accuracy of these models in the linear regime

Aknine’s presentation (next!)
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