UNIVERSITY OF OSLO

Creating a circulation model for the Oslo fjord – A step-by-step guide

Lars Willas Dreyer

Basilisk User Meeting 2025

July 8, 2025

The Oslofjord

Fiord environments in Norway are struggling

Møt Oslofjordens ene torsk

The Oslofjord

Fjord enviroments in Norway are struggling

Important factors

- 1. Emissions from populated areas
- 2. Migratory species due to global warming
- 3. Small, narrow geometries hinders healthy circulation

The Oslofjord

Fjord enviroments in Norway are struggling

Important factors

- 1. Emissions from populated areas
- 2. Migratory species due to global warming
- 3. Small, narrow geometries hinders healthy circulation

A rough outline

The talk will be split into two parts:

A rough outline

The talk will be split into two parts:

1) What is our model, and how did we build it?

A rough outline

The talk will be split into two parts:

- 1) What is our model, and how did we build it?
- 2) How do we validate the model?

Making a model

Fjords are long and shallow. Multilayer shallow water suitable.

Making a model

Fjords are long and shallow. Multilayer shallow water suitable.

Several examples on basilisk.fr to lend inspiration

Figure: Lee wave example from the basilisk webpage

Making a model

Fjords are long and shallow. Multilayer shallow water suitable.

Several examples on basilisk.fr to lend inspiration

Bottom topography, river flux and tidal data publicly available.

Theoretical models for rivers

River model

$$u = \frac{u^*}{\kappa} \log \left(\frac{z}{z_o}\right),\tag{1}$$

 u^* friction velocity, κ von Karman constant, z/z_o height over bottom roughness.

Theoretical models for rivers as inspiration

River model

$$u = U \frac{z_b - z}{z_b},\tag{1}$$

With *U* set to ensure correct flux

- Theoretical models for rivers as inspiration
- Tidal forcing on outlet, but should also facilitate "free outflow"

Tidal model

$$\nabla u = \alpha_1 (u - u_{\mathsf{tide}}) \tag{1}$$

Difficulty flowing out proportional to speed difference,

- Theoretical models for rivers as inspiration
- Tidal forcing on outlet, but should also facilitate "free outflow"

Tidal model

$$\nabla u = \alpha_1 (u - u_{\mathsf{tide}}) \tag{1}$$

Difficulty flowing out proportional to speed difference, although we use radiation rather than Neumann.

Z_X

Fjord bottom topography is steep

- Fjord bottom topography is steep
- Instabilities in non-hydrostatic pressure.

- Fjord bottom topography is steep
- Instabilities in non-hydrostatic pressure.
- Somewhat mitigated by lowering the CFL number.

- Fjord bottom topography is steep
- Instabilities in non-hydrostatic pressure.
- Somewhat mitigated by lowering the CFL number.
- Or pretending the world is hydrostatic and nice.

Current version of the framework

Validation I - Operational models

 Huge resources are being spent on operational models

Norwegian Coast

Norkyst (version 2) is used as the main forecast tool for ocean forecasting ocean currents in oil spill preparedness modeling, Search-and-Rescue pre on THREDDS. The Norkyst model is a collaboration project between the Ir

Figure: ocean.met.no/models

Validation I - Operational models

- Huge resources are being spent on operational models
- Can easily be interpolated into Basilisk

Validation I - Operational models

- Huge resources are being spent on operational models
- Can easily be interpolated into Basilisk
- Although making it work as a succesful initial condition still requires more work.

We have made a (~100 €) drifter with GPS + Thermometer

We have made a (~100 €) drifter with GPS + Thermometer
Sends data using LoRa with a tested range of ~2 km

We have made a (~100 €) drifter with GPS + Thermometer

Sends data using LoRa with a tested range of ~2 km

Range gives good coverage of the area

We have made a (~100 €) drifter with GPS + Thermometer

Sends data using LoRa with a tested range of \sim 2 km

Range gives good coverage of the area

Small size and low costs will, hopefully allow for a large(r) amount of sensors to be deployed at once.

We have made a (~100 €) drifter with GPS + Thermometer

Sends data using LoRa with a tested range of ~2 km

Range gives good coverage of the area

Small size and low costs will, hopefully allow for a large(r) amount of sensors to be deployed at once.

Compare against particle movements using inertial particles.

 Fjord geometry makes influx of sea water potentially difficult.

- Fjord geometry makes influx of sea water potentially difficult.
- And numerically difficult

- Fjord geometry makes influx of sea water potentially difficult.
- And numerically difficult
- A certain reward should perhaps be reconsidered

- Fjord geometry makes influx of sea water potentially difficult.
- And numerically difficult
- A certain reward should perhaps be reconsidered

Slartbartifast's reward

"Look at me, I design coastlines. I got an award for Norway. Where's the sense in that?"

- Slartbartifast to Arthur Dent, Hitchhiker's Guide to the Galaxy

Thanks to

- Atle Jensen
- Jean Rabault
- Andrea Pferscher
- Riccardo Sieve
- Øystein Lande

- Stephané Popinet
- Antoon van Hooft
- Einar Broch Johnsen
- Kai-Håkon Christensen

Creating a circulation model for the Oslo fjord - A step-by-step guide

Lars Willas Dreyer