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Liquid Ping-Pong in Space: https://www.youtube.com/watch?v=TLbhrMCM4_0 

https://www.youtube.com/watch?v=TLbhrMCM4_0








Jumping nanodroplets

S. Afkhami and L. Kondic, PRL (2013) 6



Today’s talking points

Bubble entrainment
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Retracting drop

Jumping drop



Simulation details

Numerics: Basilisk C

Stéphane Popinet & collaborators
Cauchy momentum + VoF
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Numerical Simulations setup

Ohl =
μl

ργH
∼ O(10−2 − 100)

Bo =
ΔρgH2

γ
∼ O(10−3)

Γ =
D
H

∼ O(10)

θs =

V =
πH3
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+ 1) ∼ O(μL)

Control Parameters
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Governing equations and boundary conditions

Symmetric part of the 
velocity gradient tensor

Dimensionless surface 
tension force
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θ = 60∘, Bo = 0

Hydrophilic substrates
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θ = 120∘, Bo = 0

Hydrophobic substrates
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What happens in moderate hydrophilicity?
θ = 90∘, Bo = 0
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How do we estimate when a droplet takes off?
Bo = 0 Γ = 8 θs = 150∘ Oh = 0.1

Factors affecting takeoff: 

• Ohnesorge number

Ohl =
η
ργH

Γ =
D
H

Bo =
ΔρgH2

γ
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Aspect ratio dependence

Factors affecting takeoff: 

• Ohnesorge number 

• Aspect ratio 

Ohl =
η
ργH

= 0.1

Γ =
D
H

Bo =
ΔρgH2

γ
= 0

Γ = 8

Γ = 12

θs = 120∘
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Viscous inhibition: is it enough?

We =
Drop inertia

Capillary pressure

Weber number ↔ Aspect ratio

• No  dependence 

•  scaling

We

Ohc + Boc ∼ 1
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Superhydrophobic substrate

Oh + Bo = 0.1 Oh + Bo = 1



What happens if the substrate is hydrophilic?

•  dependence is observed 

• No jumping is observed for  

Γ

Ohc + Boc ≪ 1

Oh = 0.01, Bo = 0, θs = 30∘, Γ = 16
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• No  dependence 

•  scaling

We

Ohc + Boc ∼ 1

Superhydrophobic substrate

Hydrophilic substrate



Contact angle effect on dissipation

Smaller contact angles result in larger 
dissipation

D =
3ηU2

θeq
ln(x)

C. Huh and L. Scriven, JCIS (1970)

P.G. De Gennes, X. Hua and P. Levinson, JFM (1990) 18



Surface energy ∼ Bulk viscous dissipation + Contact line dissipation
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Scaling to determine Ohc

Esurf ∼ γLGH2Γ2
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Ediss ∼ η (
Vγ

λ )
2

tγΩ ∼ ηVγH ( Ω
λ2 )

 : Visco-capillary velocity and time scalesVγ, tγ

 : Volume over which dissipation occursΩ

 : Lengthscale over which velocity gradients developλ



Large  regimeOh
At large , velocity gradients develop 
immediately throughout the bulk.

Oh

t/t∞ = 2.5000
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Ω ∼ H3Γ2

Ediss,bulk ∼ γLGH2Γ2Oh

Balancing with  yields,Esurf

Ohc ∼ 1
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Small  regimeOh
At small , viscous effects remain localized 
near the contact line.

Oh

Ω ∼ λ3 , λ ∼ H

Ediss,CL ∼ γLGH2Oh

Balancing with  yields,Esurf

Ohc ∼ Γ2



Bubble entrainment



Air bubble entrapped 
under an impacting 

drop on a solid 
surface

S. T. Thoroddsen, K. Takehara, H. D. Nguyen & T. G. Etoh, J. Fluid Mech., 848, R3 (2018)
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Singular jet & bubble during drop impact

We = 9

Zhang, Sanjay et al., Phys. Rev. Lett., 129, 104501 (2022)



Bubble entrainment
Bo = 0, θs = 90∘ Bo = 0, θs = 120∘

For low Oh, bubbles formation suppressed at low as well as large aspect ratios
25
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Singular bubble entrainment?

• Capillary waves get damped more at large Oh 

• “Sweet-spot” region at moderate , allowing formation of bubbles Γ

Γ = 16 Γ = 32

Ohl =
η
ργH

Γ =
D
H

Bo =
ΔρgH2

γ

Γ = 8
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Stood-Up Droplet Technique (SUD)

↔

SUD

Applied pressure

Retraction Spreading
Equilibrium, after 
multiple oscillations

Water
reservoir

Nozzle
and valve

Surface

Stood-up dropLiquid jet
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Kinetic energy Surface energy

Diego Díaz Thomas WillersDoris Vollmer



Comparison to experiments

Bo = 7.6 * 10−3

θs = 27∘Γ = 12

Oh = 5.7 * 10−3

Water on Si wafer

Numerical simulations

Experiments
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Contact line singularity



Non-integrable energy dissipation 

ε ∼
ηU
r

Shear stress :

d ·E ∼ ηU2 dr
r

∼ ηU2(d ln r)

Diverges at r → 0

Rate of energy dissipation :

Not integrable at  r → 0 and r → ∞

Each decade in  contributes comparablyr

de Gennes PG, Rev. Mod. Phys. 57:827–63 (1985)



Need for a better contact line model
Numerical slip: λ ∼ Δ/2

For accurate contact line velocities, we need 
the smallest grid cells to be order of the 
physical slip length

Not always possible with multiscale problems
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Grid dependence in contact line simulations



Our subgrid modeling schematic
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Summary

• 2 regimes for transition from surface oscillations to jumping:  

              Small aspect ratio:               Large aspect ratio:  

• Retracting droplets entrain air bubbles in a “sweet spot” range of moderate  

• Developing a mesoscale contact line subgrid model in basilisk

Ohc ∼ Γ2 Ohc ∼ 1

Γ
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Thank you!
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