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Thin fluid film falling down an inclined plane

Our aim is to stabilise the uniform film solution by injecting and removing
fluid from the base at a finite number of actuators.
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Introduction
Navier-Stokes film
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Thin fluid film falling down an inclined plane

Navier-Stokes flow in the fluid

Re(ut + uux + vuy ) = −px + 2 + uxx + uyy ,

Re(vt + uvx + vvy ) = −py − 2 cot θ + vxx + vyy ,

ux + vy = 0.
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Navier-Stokes film
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Thin fluid film falling down an inclined plane

Boundary conditions at the base

u = 0, v = f (x , t).
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Introduction
Navier-Stokes film
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Thin fluid film falling down an inclined plane

At the interface, y = h(x , t), the nonlinear dynamic stress balance

(vx + uy )(1 − h2
x) + 2hx(vy − ux) = 0,

p − 2
1 + h2

x

(vy + uxh
2
x − hx(vx + uy )) = − 1

Ca
hxx

(1 + h2
x)

3/2 ,

and the kinematic boundary condition

ht = v − uhx .
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Introduction

Navier-Stokes film

Re, Ca

h(x , t)

f (x , t)

7

multi-phase flow
complex boundary conditions
highly nonlinear
computationally expensive
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Introduction
Feedback control

The most general feedback control problem looks like

xt = Ax + Bu, u = Ky , y = Cx .

Unfortunately, this problem is too hard. We can make it easier by
allowing full observations:

xt = (A+ BK)x .

This problem is still too hard. We can make it solvable by adding
restrictions on A,B,K:

xt = (A+ BK )x ,

to give a system of linear ODEs. We now need to choose K so that
A+ BK has no positive eigenvalues.
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Introduction
Linear quadratic regulator control

We now need to choose K so that A+ BK has no positive eigenvalues.

The choice of K is currently not unique, so we introduce a quadratic cost

c =

∫ ∞

0
xTUx + uTVu dt,

thus forming an LQR problem.
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Introduction
Problem of control

Navier-Stokes film

Re, Ca

h(x , t)

f (x , t)

7

multi-phase flow
complex boundary conditions
highly nonlinear
computationally expensive

LQR controls
cheap to compute
easy to design

But requires a linear system of
ODEs
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Hierarchical framework
Reduced order model

Currently, the fluid problem is too complex to begin to think about
deriving controls.

By assuming that the size of the perturbations is small, ie

ϵ =
|∇h|
h

≪ 1,

we can significantly simplify the system

ht + qx = f ,

2Re
5

h2qt + q =
h3

3

(
2 − 2hx cot θ +

hxxx
Ca

)
+ Re

(
18q2hx

35
− 34hqqx

35
+

hqf

5

)
.

These are the equations.
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These are the weighted-residual integral boundary layer equations.
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Hierarchical framework
Reduced order model
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Development of travelling wave for Navier-Stokes and WR systems. Re = 10,
Ca = 0.05.
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Hierarchical framework
Linearisation

ht + qx = f ,

2Re
5

h2qt + q =
h3

3

(
2 − 2hx cot θ +

hxxx
Ca

)
+ Re

(
18q2hx

35
− 34hqqx

35
+

hqf

5

)
.

These equations are still very nonlinear.

Assuming that any perturbations
from the uniform film are small

h = 1 + δĥ, q =
2
3
+ δq̂, f = δf̂ ,

we have

ĥt = −q̂x + f̂ ,

q̂t =

[
5
Re

+

(
4
7
− 5 cot θ

3Re

)
∂x +

5
6ReCa

∂xxx

]
ĥ −

[
5

2Re
+

34
21

∂x

]
q̂ +

1
3
f̂ .
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Hierarchical framework
Discretisation

Finally we can discretise[
h
q

]
t

=

[
Jhh Jhq
Jqh Jqq

] [
h
q

]
+

[
Ψh

Ψq

]
f ,

=

([
Jhh Jhq
Jqh Jqq

]
+

[
Ψh

Ψq

]
K

)[
h
q

]
.

Or, in more concise notation,

ξt = (J +ΨK ) ξ

Holroyd, Cimpeanu, and Gomes Falling liquid film control July 2023 11 / 21



Hierarchical framework
Discretisation

Finally we can discretise[
h
q

]
t

=

[
Jhh Jhq
Jqh Jqq

] [
h
q

]
+

[
Ψh

Ψq

]
f ,

=

([
Jhh Jhq
Jqh Jqq

]
+

[
Ψh

Ψq

]
K

)[
h
q

]
.

Or, in more concise notation,

ξt = (J +ΨK ) ξ

Holroyd, Cimpeanu, and Gomes Falling liquid film control July 2023 11 / 21



Hierarchical framework
Discretisation

Finally we can discretise[
h
q

]
t

=

[
Jhh Jhq
Jqh Jqq

] [
h
q

]
+

[
Ψh

Ψq

]
f ,

=

([
Jhh Jhq
Jqh Jqq

]
+

[
Ψh

Ψq

]
K

)[
h
q

]
.

Or, in more concise notation,

ξt = (J +ΨK ) ξ

Holroyd, Cimpeanu, and Gomes Falling liquid film control July 2023 11 / 21



Hierarchical framework

Full Navier-Stokes

Weighted Residuals

Linear PDEs

Linear ODEs

Control

asymptotics

linearisation

discretisation
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Numerical experiments

What does this actually look like in practice?
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Numerical experiments
Gain matrix
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3

Feedback gain for a single actuator. Re various, Ca = 0.05.
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Numerical experiments
Simulation

Initial development of a travelling wave. Re = 15, Ca = 0.05.
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Numerical experiments
Simulation

Measurement of the height. Re = 15, Ca = 0.05.

Holroyd, Cimpeanu, and Gomes Falling liquid film control July 2023 15 / 21



Numerical experiments
Simulation

Computation of controls. Re = 15, Ca = 0.05.
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Numerical experiments
Simulation

Controls stabilising the uniform film. Re = 15, Ca = 0.05.
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Numerical experiments
Successful control

Controls attempting to stabilise the uniform film. Re various, Ca = 0.05.
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Stability Analysis

What predictions can we make about the stabilisability of the system?

We can’t make any predictions about the stabilisability of the full
Navier-Stokes system. But we can reuse the linear theory to get an
approximation. Recall

ξt = (J +ΨK ) ξ.

Shifting to Fourier space and explicitly separating the unstable modes

ξ̃t =

[
J̃u + Ψ̃uK̃u 0

Ψ̃sK̃u J̃s

]
ξ̃.

So the number of controls should exceed the number of unstable
modes.
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Stability analysis
Unstable modes

If we look at a unimodal perturbation h = 1 + ĥe ikx+λt we have

λ2 +

(
5

2Re
+

34
21

ik

)
λ+

(
5
Re

ik −
[
4
7
− 5 cot θ

3Re

]
k2 +

5
6ReCa

k4
)

= 0.

Rescaling to allow for L ̸= 2π we can compute the unstable mode count

nu = 1 + 2

⌊
L

2π

√
Ca

(
8
5
Re − 2 cot θ

)⌋
.
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Stability analysis
Numerical comparison
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In practice the controls outperform the linear predictions.
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Conclusion

Optimal feedback control for complex systems is achievable

Controls function well outside the range of model validity
Controls exceed expected performance

Next steps:

3D flows
Alternative actuator mechanisms
Restricted observations
Infinite-dimensional control
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More detail

Preprint available on arXiv

arxiv.org/pdf/2301.11379

Code available on GitHub

github.com/OaHolroyd/falling-film-
control/tree/paper-dec-2022
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