

Bubble Dissolution in Taylor-Couette flow

Gabriele Gennari Dr. Richard Jefferson-Loveday

> BGUM 2023 July 6th, Paris

Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham, Nottingham NG7 2RD, United Kingdom

Outline

- 1. Motivation
- 2. Description of the problem
- 3. Numerical Framework
- 4. Taylor-Couette flow: single-phase validation
- 5. Mass transfer in Taylor-Couette flow
- 6. Conclusions

Motivation

Mass transfer of soluble species

• Mass transfer of soluble species occurs in many natural and industrial systems.

• Air-Sea gas transfer

- Chemical reactors
- Green production of hydrogen

- Complex physics (multi-phase flow, interfacial discontinuity, reactive species).
- Design models rely on simplified correlation formulae.

Problem description

Soluble species in bubbly flows

- Disperse bubbly flow
- Soluble species in the liquid

July 6th, Paris

Problem description

Soluble species in bubbly flows

Disperse bubbly flow

Problem description

Soluble species in bubbly flows

Disperse bubbly flow

GAS TURBINE AND TRANSMISSION RESEARCH

July 6th, Paris

Numerical framework

Direct Numerical Simulations of two-phase flows

- Incompressible DNS + geometric VOF
- Phase-change model

$$\nabla \cdot \boldsymbol{u} = \dot{m} \left(\frac{1}{\rho_d} - \frac{1}{\rho_c} \right) \delta_{\Sigma}$$

$$\frac{\partial \boldsymbol{u}}{\partial t} + \nabla \cdot (\boldsymbol{u} \otimes \boldsymbol{u}) = \frac{1}{\rho} [-\nabla p + \nabla \cdot (2\mu \boldsymbol{D})] + \frac{\sigma k \boldsymbol{n}_{\Sigma}}{\rho} \delta_{\Sigma}$$
$$\frac{\partial f}{\partial t} + \nabla \cdot (\boldsymbol{u} f) = -\frac{\dot{m}}{\rho_c} \delta_{\Sigma}$$

Transport of species Two-scalar approach

• Two scalar equations for each species

$$\frac{\phi_c^{n+1} - \phi_c^n}{\Delta t} V + \oint_{\partial V_c \setminus \Sigma} c_c \boldsymbol{u}_c \cdot \boldsymbol{n} \, ds - \oint_{\partial V_c \setminus \Sigma} D_c \nabla c_c \cdot \boldsymbol{n} \, ds = -\oint_{\Sigma} \frac{\dot{m}}{M} \, ds$$

$$\frac{\phi_d^{n+1} - \phi_d^n}{\Delta t} V + \oint_{\partial V_d \setminus \Sigma} c_d \boldsymbol{u_d} \cdot \boldsymbol{n} \, ds - \oint_{\partial V_d \setminus \Sigma} D_d \nabla c_d \cdot \boldsymbol{n} \, ds = + \oint_{\Sigma} \frac{\dot{m}}{M} \, ds$$

Transport of species Two-scalar approach

• Two scalar equations for each species

- Species confined within the respective phase during advection/diffusion
- Advection: tracers associated to VOF field
- Diffusion coefficient weighted by the face fraction field [*]

* Magdelaine-Guillot de Suduiraut, Q., 2019. Hydrodynamique des films liquides hétérogènes. Thesis. Sorbonne Université.

Mass transfer rate

A geometric scheme

Diffusion-driven mass transfer (Fick's law)

$$-\frac{\partial c_c}{\partial n_{\Sigma}} = f_P \frac{c_c(P_1) - c_c(P)}{PP_1} + (1 - f_P) \frac{c_c(P_2) - c_c(P)}{PP_2} [*]$$

•
$$c_c(P) = \frac{c_d(P)}{H_e}$$
 (Henry's law)

* Bothe, D., Fleckenstein, S., 2013. A volume-of-fluid-based method for mass transfer processes at fluid particles. Chem. Eng. Sci. 101, 283–302.

Mass transfer rate

A geometric scheme

Diffusion-driven mass transfer (Fick's law)

•
$$-\frac{\partial c_c}{\partial n_{\Sigma}} = f_P \frac{c_c(P_1) - c_c(P)}{PP_1} + (1 - f_P) \frac{c_c(P_2) - c_c(P)}{PP_2} [*]$$

•
$$c_c(P) = \frac{c_d(P)}{H_e}$$
 (Henry's law)

* Bothe, D., Fleckenstein, S., 2013. A volume-of-fluid-based method for mass transfer processes at fluid particles. Chem. Eng. Sci. 101, 283–302.

Mass transfer rate

A geometric scheme

Diffusion-driven mass transfer (Fick's law)
ṁ = - ^{D_cM}/_{1-y} ^{∂c_c}/_{∂n_Σ}

•
$$-\frac{\partial c_c}{\partial n_{\Sigma}} = f_P \frac{c_c(P_1) - c_c(P)}{PP_1} + (1 - f_P) \frac{c_c(P_2) - c_c(P)}{PP_2} [*]$$

•
$$c_c(P) = \frac{c_d(P)}{H_e}$$
 (Henry's law)

* Bothe, D., Fleckenstein, S., 2013. A volume-of-fluid-based method for mass transfer processes at fluid particles. Chem. Eng. Sci. 101, 283–302.

Mass transfer rate

A geometric scheme

•
$$-\frac{\partial c_c}{\partial n_{\Sigma}} = f_P \frac{c_c(P_1) - c_c(P)}{PP_1} + (1 - f_P) \frac{c_c(P_2) - c_c(P)}{PP_2} [*]$$

Diffusion-driven mass transfer (Fick's law)
ṁ = - ^{D_cM}/_{1-y} ^{∂c_c}/_{∂n_Σ}

•
$$c_c(P) = \frac{c_d(P)}{H_e}$$
 (Henry's law)

* Bothe, D., Fleckenstein, S., 2013. A volume-of-fluid-based method for mass transfer processes at fluid particles. Chem. Eng. Sci. 101, 283–302.

July 6th, Paris

Coupling with a geometric VOF method Incompatibility issue

- Geometric VOF method [*] •
- Kinematic constraint:

$$\frac{\Delta t}{\Delta} H_{(i,j)} \nabla_{\Delta} \cdot \boldsymbol{u} = 0$$
$$H_{(i,j)} = \begin{cases} 1 & \text{if } f > 0.5\\ 0 & \text{Otherwise} \end{cases}$$

^{*} Weymouth, G.D., Yue, D.K.P., 2010. Conservative volume-of-fluid method for free-surface simulations on cartesian-grids. J. Comput. Phys. 229, 2853–2865.

Coupling with a geometric VOF method Incompatibility issue

- Geometric VOF method [*]
- Kinematic constraint:

$$\frac{\Delta t}{\Delta} H_{(i,j)} \nabla_{\Delta} \cdot \boldsymbol{u} = 0$$

 $H_{(i,j)} = \begin{cases} 1 & \text{if } f > 0.5 \\ 0 & \text{Otherwise} \end{cases}$

Always true for incompressible flows without mass transfer

^{*} Weymouth, G.D., Yue, D.K.P., 2010. Conservative volume-of-fluid method for free-surface simulations on cartesian-grids. J. Comput. Phys. 229, 2853–2865.

Coupling with a geometric VOF method Incompatibility issue

- Geometric VOF method [*]
- Kinematic constraint:

$$\frac{\Delta t}{\Delta} H_{(i,j)} \nabla_{\Delta} \cdot \boldsymbol{u} = 0$$

 $H_{(i,j)} = \begin{cases} 1 & \text{if } f > 0.5 \\ 0 & \text{Otherwise} \end{cases}$

- Always true for incompressible flows without mass transfer
- Not true for phase-change flows

^{*} Weymouth, G.D., Yue, D.K.P., 2010. Conservative volume-of-fluid method for free-surface simulations on cartesian-grids. J. Comput. Phys. 229, 2853–2865.

Coupling with a geometric VOF method

Incompatibility issue

- Geometric VOF method [*]
- Kinematic constraint:

$$\frac{\Delta t}{\Delta} H_{(i,j)} \nabla_{\Delta} \cdot \boldsymbol{u} = \boldsymbol{0}$$

 $H_{(i,j)} = \begin{cases} 1 & \text{if } f > 0.5 \\ 0 & \text{Otherwise} \end{cases}$

- Always true for incompressible flows without mass transfer
- Not true for phase-change flows

Bubble with constant mass transfer rate

^{*} Weymouth, G.D., Yue, D.K.P., 2010. Conservative volume-of-fluid method for free-surface simulations on cartesian-grids. J. Comput. Phys. 229, 2853–2865.

Coupling with a geometric VOF method Incompatibility issue

Geometric VOF method [*]

Kinematic constraint:

```
\frac{\Delta t}{\Delta} H_{(i,j)} \nabla_{\Delta} \cdot \boldsymbol{u} = 0
```

 $H_{(i,j)} = \begin{cases} 1 & \text{if } f > 0.5 \\ 0 & \text{Otherwise} \end{cases}$

- Always true for incompressible flows without mass transfer
- Not true for phase-change flows

Bubble with constant mass transfer rate

^{*} Weymouth, G.D., Yue, D.K.P., 2010. Conservative volume-of-fluid method for free-surface simulations on cartesian-grids. J. Comput. Phys. 229, 2853–2865.

GAS TURBINE AND TRANSMISSIONS

July 6th, Paris

Coupling with a geometric VOF method Velocity extension

• Always true in pure gas cells $(H_{(i,j)} = 0)$

 $\frac{\Delta t}{\Lambda} H_{(i,j)} \nabla_{\Delta} \cdot \boldsymbol{u} = 0$

July 6th, Paris

Coupling with a geometric VOF method Velocity extension

• Always true in pure gas cells $(H_{(i,j)} = 0)$

```
\frac{\Delta t}{\Lambda} H_{(i,j)} \nabla_{\Delta} \cdot \boldsymbol{u} = 0
```

Mass transfer redistribution [*,**]

^{*} Gennari, G., Jefferson-Loveday, R., Pickering, S. J., 2022. A phase-change model for diffusion-driven mass transfer problems in incompressible two-phase flows. Chem. Eng. Sci. 259 117791.

^{**} Boyd, B., Ling, Y., 2023. A consistent volume-of-fluid approach for direct numerical simulation of the aerodynamic breakup of a vaporizing drop. Computers & Fluids 254 105807.

Coupling with a geometric VOF method Velocity extension

• Always true in pure gas cells $(H_{(i,j)} = 0)$

```
\frac{\Delta t}{\Delta} H_{(i,j)} \nabla_{\Delta} \cdot \boldsymbol{u} = 0
```

Mass transfer redistribution [*,**]

$$avg_{(i,j)} =$$
pure gas cells $\Big|_{3\times 3}$

* Gennari, G., Jefferson-Loveday, R., Pickering, S. J., 2022. A phase-change model for diffusion-driven mass transfer problems in incompressible two-phase flows. Chem. Eng. Sci. 259 117791.

** Boyd, B., Ling, Y., 2023. A consistent volume-of-fluid approach for direct numerical simulation of the aerodynamic breakup of a vaporizing drop. Computers & Fluids 254 105807.

July 6th, Paris

Coupling with a geometric VOF method Velocity extension Ω_{c}

• Always true in pure gas cells $(H_{(i,i)} = 0)$

 $\frac{\Delta t}{\Lambda} H_{(i,j)} \nabla_{\Delta} \cdot \boldsymbol{u} = 0$

Mass transfer redistribution [*,**]

$$avg_{(i,j)} =$$
pure gas cells $\Big|_{3\times 3}$

 $\dot{m}'_{(i,j)} = \sum_{2\times 2} \frac{m_{(l,k)}}{avg_{(l,k)}} A_{\Sigma(l,k)}$ j Ω_d 2

* Gennari, G., Jefferson-Loveday, R., Pickering, S. J., 2022. A phase-change model for diffusion-driven mass transfer problems in incompressible two-phase flows. Chem. Eng. Sci. 259 117791.

** Boyd, B., Ling, Y., 2023. A consistent volume-of-fluid approach for direct numerical simulation of the aerodynamic breakup of a vaporizing drop. Computers & Fluids 254 105807.

Coupling with a geometric VOF method Velocity extension

• Always true in pure gas cells ($H_{(i,j)} = 0$)

 $\frac{\Delta t}{\Delta} H_{(i,j)} \nabla_{\Delta} \cdot \boldsymbol{u} = 0$

Mass transfer redistribution [*,**]

$$avg_{(i,j)} =$$
pure gas cells $\Big|_{3\times 3}$

* Gennari, G., Jefferson-Loveday, R., Pickering, S. J., 2022. A phase-change model for diffusion-driven mass transfer problems in incompressible two-phase flows. Chem. Eng. Sci. 259 117791.

j

** Boyd, B., Ling, Y., 2023. A consistent volume-of-fluid approach for direct numerical simulation of the aerodynamic breakup of a vaporizing drop. Computers & Fluids 254 105807.

Validation

Velocity extension

Validation

0

-300

* Gennari, G., Jefferson-Loveday, R., Pickering, S. J., 2022. A phase-change model for diffusion-driven mass transfer problems in incompressible two-phase flows. Chem. Eng. Sci. 259 117791.

Validation

Rising bubble at different Péclet numbers

* Takemura, F., Yabe, A., 1998. Gas dissolution process of spherical rising gas bubbles. Chem. Eng. Sci. 53, 2691–2699.

July 6th, Paris

Validation

Rising bubble at different Péclet numbers

* Takemura, F., Yabe, A., 1998. Gas dissolution process of spherical rising gas bubbles. Chem. Eng. Sci. 53, 2691–2699.

Validation

Rising bubbles with different shapes

- Bubbles with generic shapes are corrected trough a shape factor: $Sr = {}^{A_{\Sigma}}/_{A_{sphere}}$
 - Four cases [*]:

* Farsoiya, P., Magdelaine, Q., Antkowiak, A., Popinet, S., & Deike, L. (2023). Direct numerical simulations of bubble-mediated gas transfer and dissolution in quiescent and turbulent flows. *Journal of Fluid Mechanics, 954,* A29.

Validation

Rising bubbles with different shapes

• Bubbles with generic shapes are corrected trough a shape factor: $Sr = {}^{A_{\Sigma}}/_{A_{sphere}}$

• Four cases [*]:

* Farsoiya, P., Magdelaine, Q., Antkowiak, A., Popinet, S., & Deike, L. (2023). Direct numerical simulations of bubble-mediated gas transfer and dissolution in quiescent and turbulent flows. *Journal of Fluid Mechanics, 954,* A29.

July 6th, Paris

Taylor-Couette flow Flow instability and Taylor vortices

• Vortices enhance the mixing within the reactor

Taylor-Couette flow Flow instability and Taylor vortices

Vortices enhance the mixing within the reactor

Taylor-Couette flow Flow instability and Taylor vortices

Vortices enhance the mixing within the reactor

0.1

0.3

 $u_z/U_{\rm in}$

0.2

Taylor-Couette flow

Flow instability and Taylor vortices

- Contours of axial velocity at different Reynolds x
- Radius ratio $\eta = \frac{r_{in}}{r_{out}} = 0.5$
- Periodic top/bottom boundaries

Case	Re	Regime
a)	1000	Laminar
b)	3000	Turbulent
C)	5000	Turbulent

-0.3

-0.2

-0.1

0

Taylor-Couette flow

Flow instability and Taylor vortices

- $\times r_{\rm out})$ Contours of axial velocity at different Reynolds • z/(0.5
- Radius ratio $\eta = \frac{r_{in}}{r_{out}} = 0.5$
- Periodic top/bottom boundaries

Case	Re	Regime
a)	1000	Laminar
b)	3000	Turbulent
C)	5000	Turbulent

Taylor-Couette flow

Flow instability and Taylor vortices

- $\times r_{\rm out})$ Contours of axial velocity at different Reynolds • z/(0.5
- Radius ratio $\eta = \frac{r_{in}}{r_{out}} = 0.5$ •
- Periodic top/bottom boundaries

Case	Re	Regime
a)	1000	Laminar
b)	3000	Turbulent
C)	5000	Turbulent

Taylor-Couette flow Validation – Cylinder Torque

- Inner and Outer torques balance at equilibrium
- Non-dimensional torque:

Taylor-Couette flow Validation – Cylinder Torque

* Wendt, F. (1933). Turbulente strömungen zwischen zwei rotierenden konaxialen zylindern. Ingenieur-Archiv, 4(6), 577-595

Taylor-Couette flow Validation – Velocity field

Average azimuthal velocity

Taylor-Couette flow Validation – Velocity field

Average azimuthal velocity

Chouippe, A., Climent, E., Legendre, D., & Gabillet, C. (2014). Numerical simulation of bubble dispersion in turbulent taylor-couette flow. Physics of Fluids, 26 (4), 043304. Dong, S. (2007). Direct numerical simulation of turbulent taylor–couette flow. Journal of Fluid

Mechanics, 587, 373–393

Taylor-Couette flow Validation – Velocity field

- Average azimuthal velocity fluctuations
 - $-u_{\theta} = < u_{\theta} > + u_{\theta}'$
- Typical two-peak profiles near the walls (channel flow)

Chouippe, A., Climent, E., Legendre, D., & Gabillet, C. (2014). Numerical simulation of bubble dispersion in turbulent taylor-couette flow. Physics of Fluids, 26 (4), 043304. Dong, S. (2007). Direct numerical simulation of turbulent taylor–couette flow. Journal of Fluid Mechanics, 587, 373–393

Mass transfer in Taylor-Couette flow Simulation Setup

- A single bubble is let free to rise in an under-saturated liquid
- Ga = 1050.7, Bo = 3.4, Sc = 0.458, $\rho_c/\rho_d = 767.7$, $\mu_c/\mu_d = 52.2$

r _{out}	Case	Re	Regime	$D_b^{t=0}/d$	Cells/ $D_b^{t=o}$	Gravity
Tim	a)	0	N/A	1/3	164	yes
	b)	1000	Laminar	1/3	164	yes
	C)	3000	Turbulent	1/3	164	yes
	d)	5000	Turbulent	1/3	164	yes
	e)	1000	Laminar	1/3	164	no
	f)	3000	Turbulent	1/3	164	no
	g)	5000	Turbulent	1/3	164	no

Regime

Laminar

Turbulent

Turbulent

N/A

GAS TURBINE AND TRANSMISSIONS RESEARCH CENTRE

July 6th, Paris

Mass transfer in Taylor-Couette flow

Iso-surfaces of dissolved gas

 Iso-surfaces of dissolved gas r_{out} Case Re r_{in} a) 0 b) 1000 C) 3000 d) 5000

a)	
Re =	= 0

July 6th, Paris

Mass transfer in Taylor-Couette flow

Iso-surfaces of dissolved gas

 Iso-surfaces of dissolved gas r_{out} r_{in} 2

Case	Re	Regime
a)	0	N/A
))	1000	Laminar
2)	3000	Turbulent
d)	5000	Turbulent

July 6th, Paris

Mass transfer in Taylor-Couette flow

Iso-surfaces of dissolved gas

 Iso-surfaces of dissolved gas r_{out} r_{in}

Case	Re	Regime
a)	0	N/A
b)	1000	Laminar
c)	3000	Turbulent
d)	5000	Turbulent

Re = 3000

July 6th, Paris

Mass transfer in Taylor-Couette flow

Iso-surfaces of dissolved gas

 Iso-surfaces of dissolved gas r_{out} r_{in} a b С d

Case	Re	Regime
)	0	N/A
)	1000	Laminar
)	3000	Turbulent
)	5000	Turbulent

Mass transfer in Taylor-Couette flow

Volume dissolution

- Bubble initial diameter is 1/3 of the gap
- Buoyancy and surface tension overcome the effect of the carrier flow on the dissolution rate.

Sh -Mass transfer in Taylor-Couette flow Re_b — Sherwood numbers b) 40 1600 30 1200 Re_b Sh20 800 10 400 Re = 1000Re = 00 0 d 40160030

- $Sh = \frac{k_m D_b}{D}$, $k_m = -\frac{\int_{\Sigma} \dot{m} dS}{A_{\Sigma} M \Delta c}$ • $Re_b = \frac{\bar{\rho}_c U_b D_b}{\mu_c}$
- Sh and Re are generally related in bubbly flows driven by buoyancy.

t[s]

0,020,040,060,0°0,1

Re = 3000

Sh

20

10

July 6th, Paris

Mass transfer in Taylor-Couette flow Sherwood numbers

• Typical behavior of the Sh - Re curves suggests a comparison against common correlation formulae*:

$$-Sh = 2 + 0.651 \frac{Pe^{1.72}}{1 + Pe^{1.22}} \text{ for } Re_b \to 0, Sc \to \infty$$
$$-Sh = 2 + \frac{0.232Pe^{1.72}}{1 + 0.205Pe^{1.22}} \text{ for } Re_b \to \infty, Sc \to 0$$

Present work -

Mass transfer in Taylor-Couette flow Sherwood numbers

 Typical behavior of the Sh – Re curves suggests a comparison against common correlation formulae*:

$$-Sh = 2 + 0.651 \frac{Pe^{1.72}}{1 + Pe^{1.22}} \text{ for } Re_b \to 0, Sc \to \infty$$
$$-Sh = 2 + \frac{0.232Pe^{1.72}}{1 + 0.205Pe^{1.22}} \text{ for } Re_b \to \infty, Sc \to 0$$

July 6th, Paris

Mass transfer in Taylor-Couette flow

July 6th, Paris

Taylor-Couette flow

Bottom bubble -

×

GAS TURBINE AND TRANSMISSIONS RESEARCH CENTRE

July 6th, Pa Single bubble

Taylor-Couette flow Wake effect

- The top bubble behaves as if it were isolated
- The bottom bubble has a slower dissolution rate

Single bubble

GAS TURBINE AND TRANSMISSIONS RESEARCH CENTRE

Taylor-Couette flow Wake effect

- The top bubble behaves as if it were isolated
- The bottom bubble has a slower dissolution rate
- For larger rotating speed (and stronger Taylor vortices), top and bottom bubbles behave similarly

Conclusions

- Numerical framework for the mass transfer of soluble species in two-phase incompressible flows based on Henry's law.
- Redistribution of the mass source term and divergence-free velocity field in interfacial cells.
- Modelling and Validation of laminar and turbulent Taylor-Couette flows
- Large bubbles are less sensitive to the carrier flow (in terms of dissolution rate)
- Standard Sh correlation formulae can provide sensible results when bubbles are mainly driven by gravity
- Stronger Taylor vortices generate more dispersion and enhance global mass transfer for multiple bubbles

Thank you for your attention Any questions?